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Introduction

Regulation enables homoeostasis in the pres-
ence of environmental perturbations. Any
prokaryotic cell is exposed to an ever changing en-
vironment. It is subjected to heat waves and ra-
diation hazards and has to deal with fluctuating
amounts of resource molecules. However, the cell is
not just a passive instance instead life itself con-
tributes significantly to the changes in the envi-
ronment, a fact testified by the oxygen we breath
[15]. Despite those environmental changes any or-
ganism needs to maintain its identity by balancing
its constitution. Only in the presence of a certain
degree of homoeostasis is a reliable functioning of
the intricately interwoven reactions possible. This
homoeostasis is jeopardised in the presence of envi-
ronmental perturbations would an organism not be
able to regulate the mass flow through its metabolic
reaction pathways. How is this regulation achieved?
The enzymes that catalyse most reaction conver-
sions are ideal handles for regulation [8,[18]. An ini-
tial rationality of which reaction is the most suited
for regulation is obtained by the free energy changes
in each reaction. If a reaction is close to equilib-
rium then the value of the free energy change is
close to zero. For those reactions the forward and
reverse reactions are equal and do not provide ef-
fective means for regulating the flux. Therefore, as
a first approximation to identify regulation prone
positions we look for reactions that have a high free
energy change in vivo ([20]7).

MCA and BST help to find regulation posi-
tions while neglecting purpose. Examination
of free energy changes provides first hints regarding
regulation, however, no reaction takes place iso-
lated in an organisms metabolism and therefore, if
we wish to quantify regulability we need to include
systemic properties as well. Two major and related
approaches were developed to quantify control in
biochemical systems: Metabolic Control Analysis
(MCA) and Biochemical Systems Theory (BST)
[3, 10, 2I]. Both methods consider the mass flow
in systems of consecutive reactions and determine
the control that the flow of one reaction has onto
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Figure 1: Regulation metaphor of daming up a river
bed. The brown line represents an arbitrary river
bed while the blue line represents imaginary water
flow. Regulation of the water flow can serve pur-
poses of power generation, accomplishing constant
flow rates or maximum flow rates for a downstream
lake to fill.

the complete system. This information can be
readily quantified combined with the free energy
information [8]. Thus, we enhanced the previous
biochemical notion that was focused on isolated
reactions by considering global properties of a
reaction network.

MCA and BST examine systemic properties of
regulation efficiency in response to perturbations
in the activity of reaction catalysing enzymes.
Though, what these theories not consider explicitly
is what purpose a regulation can have. The
situation is illustrated in figure we consider
an analogous metaphor of regulation of water
flow in a river bed. While MCA and BST would
adequately find positions that allow maximum
regulability of characteristics associated with
components of the flow they do not consider
the direct shape of the objective function for
which the mass flow serves. In the following an
approach is suggested that aims to alleviate this
neglect of purpose regarding regulation. Since
purposes can have a multitude of appearances
and shapes it is not possible to formulate a
closed theory for this, instead the only feasible
solution may be derived via extensive evaluation
of regulatory structures given an objective function.

Computational evolution is an appropriate
tool to identify preferred regulations. Com-
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Figure 2: Basic structure for the metabolic network
(figure [2(a)) and the functional implementation of

the regulators (2(b))) with a specific example.

putational evolution (CE) is roughly spoken a pro-
cess in which individuals are tested for their fitness.
Selection for the next generation is biased towards
fitter individuals which are then subjected to muta-
tions in order to find fitter individuals [2] [5]. Com-
putational evolution of networks has been used for
example by Paladugu et al. to find specific topolo-
gies for regulatory signalling networks that provide
functions like bistable switches, oscillations or fre-
quency filters [I7]. They used complex kinetic laws
of kind of Michaelis-Menten and Hill to integrate
regulation while Francois & Hakim applied elemen-
tary reactions to evolve bistability and oscillations
[6]. Soyer et al. use computational evolution to ex-
plore functional characteristics of chemotaxis [19].
But not only was CE used to trace specific solutions
for fitness functions but also to derive design princi-
ples of networks that evolved towards specified func-
tions. Kim et al. find that oscillation and multista-
bility is accompanied with an increased amount of
positive feed forward loops among others [13]. Our
task is similar: we ask for general design principles
of networks when evolved towards a specific func-
tion, however, we do not use pure gene regulatory
networks but also consider metabolic conversions to
accommodate environmental influences.

This study uses computation evolution to un-
cover design principles for regulation strategies of
a defined perturbation—fitness function pair. The
method part introduces the underlying structure of
the metabolic networks that are subjected to regu-
lation. The process of the computational evolution
is described followed by presentation of the analyti-
cal techniques used to extract information from the
computational evolution.

Methods

Metabolic network structure

In order to identify regulation tendencies in
metabolic network we first need to define how the

metabolic networks are constructed and in which
way regulation is realised.

The principle scheme of metabolic networks is
shown in figure We assume a linear cascade of
metabolites that are connected by reactions catal-
ysed by specific enzymes. The reactions are strictly
irreversible and we assume simple second order ki-
netics for the enzymatic activity. The first and the
end metabolite have additional properties giving
them outstanding importance. The concentration
of the first metabolite is assumed to be not changed
by its consumption. The figurative interpretation
for this metabolite is that it represents an environ-
mental resource component and is only subjected
to environmental perturbations, which the resource
molecule transmits to our model metabolism. The
end product of the metabolism is assumed to be a
metabolite that is used to support the synthesis of
the enzyme proteins, cf. figure It could be in-
terpreted as for example being ATP if the enzyme
synthesis process is energy restricted or a growth
limiting amino acid. Besides enzyme synthesis the
metabolic end product is used for various other pur-
poses designated in the example of figure by
reaction C'. There exists a first order degradation
process for each enzyme. Regulation is now intro-
duced as a process by which the metabolites control
the synthesis of enzyme proteins from the metabolic
end product as shown in figure left side. The
right side in this figure shows a preferred reduced
figurative version.

The evolving networks contain three types of
species: the metabolites which are directly linked
with the environmental resource and are able to
send regulation to enzymes, the enzymes which
catalyse the conversion processes of metabolites and
are the final destination for regulation and finally
regulator proteins that act as intermediary pro-
teins whose concentration is regulated by metabo-
lites and which are able to regulate other regula-
tors or enzymes. The dynamics of the metabolites
is characterised by their production from precursor
metabolites and the catalytic activity of enzymes
and their consumption in a reaction to following
metabolites catalysed by the appropriate enzyme
which will be called cognate enzyme in the follow-
ing:
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Herein, ™€ are metabolite, enzyme concentra-
tion, respectively, n corresponds to the number of
metabolites and S represents the kinetic parameter
matrix which has for the example in figure [2] the
form:

0 0 0
S= |k, -k 0 (2)
0 ky —k.



Here we see that those reactions that lie on the di-
agonal are the reactions catalysed by the cognate
enzymes. In eq. [1| the index i corresponds to rows
while j walks over the columns of S.

The dynamics of enzymes and regulators are solved
with the same kind of ODEs. Both are degraded
by a first order process while the synthesis uses the
metabolic end product for enzyme production:
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In the above equation S€¢ is the degradation matrix
that contains the degradation parameters on the di-
agonal and is zero otherwise. The parameter kgyy, is
a synthesis parameter and is assumed to stay con-
stant at 1, and W is the regulation or interaction
matrix. Three kinds of interactions are possible:
activation, inhibition and no regulation represented
by the numerals 1, -1 and 0 respectively. The in-
teraction matrix for the example in figure 2| would
take the form:

1 0 0
w=[0 -1 0], (4)
0 0 1

whereby each row in W reflects the regulation for a
specific enzyme (regulator, not present in the exam-
ple). The function P(a) combines the concentration
of a metabolite with its interaction sign to calculate
an updated synthesis value for an enzyme (or reg-
ulator). Throughout this study we use a sigmoidal
function of the form

m 1
POV = T

J

()

that was already used by Furusawa & Kaneko to
model regulated synthesis [7]. In the equation p de-
fines the steepness of the sigmoidal transition and
is chosen to be 1, while 6 determines an expression
factor that would yield expression diversity without
existence of regulation, here chosen to be 0, i.e. all
proteins (enzymes-+regulators) have the same ex-
pression level in the absence of regulation.

Computational evolution

CE is a circular process composed of four separate
steps. In the first step an initial random population
is seeded and in the second step the fitness of each
individual is measured. Based on the individual fit-
ness a selection strategy is chosen to determine a
parental generation that makes up 50 % of a new
population (as in [6]). The other half of the popu-
lation is generated by subjecting the parental gen-
eration to mutations. A new population has now
formed for which we can again determine the indi-
viduals fitness and repeating the circle.

In the seeding process for the random initial
population we first define the number of metabo-
lites n in the linear reaction cascade. The num-
ber of enzymes equals the number of metabolites
since the former catalyse all metabolite conversions.
Then the kinetic parameters of matrix S (conver-
sion and degradation constants, equation are
randomly drawn from a uniform distribution rang-
ing from zero to ten. In the initial population the
interaction matrix W is of squareform of size n and
a defined number of interactions is distributed. Fi-
nally, we need to set the number of individuals that
form the population.

The next step is the fitness evaluation of the pop-
ulation. The fitness function is indeed the most im-
portant component in the study, it defines the pur-
pose for which the metabolic network is optimised.
Of course we seek to choose fitness functions that
reflect real purposes for metabolic pathways in fac-
tual organisms. Since we also include perturbations
of a resource component in the model, which is done
to further narrow the regulation solution space, the
fitness function we choose will also depend on the
perturbation that is realised in the resource com-
ponent. However, as a matter of fact metabolic
pathways have not evolved to optimally respond to
a specific purpose instead often different purposes
shaped the regulation structure of the pathways.
Therefore, even theoretical investigations into op-
timal fitness function for metabolic regulatory net-
works are doomed to fail. Consequently, we can
only use general purposes as targets for evolution,
for example hysteresis, bistability, oscillations and
so forth. In the outlook we will have a look to
promising approaches by the group of Uri Alon who
searches for the realised fitness function in regula-
tory networks.

An important addition to any fitness function is a
penalty for the amount of regulatory proteins. This
corresponds to a so called parsimony pressure that
prevents the occurrence of code bloat. Code bloat,
also known as structural complexity and intron in-
crease [14], [5], would in our case occur if regulator
proteins accumulate that have no effect on the fit-
ness.

We include in the fitness function only the end
metabolite due to its outstanding importance as
building block for the enzymes.

Following [6] we choose half of the population as
parent for the next generation. The selection strat-
egy we have opted for takes always the fittest in-
dividual as one parent, then we visit each individ-
ual while decreasing in fitness. Each individual has
now a 90 % chance of becoming parent. Therefore,
a small margin of less fit individuals also get the
opportunity to become parent and to improve their
regulation. With this we seek to gain a slightly
more diverse population.



Mutations in the populations can only act on the
matrices that contain parameter values. These are
matrices S containing the reaction parameters for
the interconversion of metabolites and the degra-
dation constants for enzymes and the interaction
matrix W. For the moment we are only interested
in regulation properties and therefore we disregard
the reaction parameter matrix S because I assume
considering mutation in this matrix as well would
expand the regulation solution space so much that
a reasonable exploration is questioned. Two kinds
of alterations can be applied on the interaction ma-
trix W: we can change entry types or we change the
dimensions of the matrix. The former change cor-
responds to changing an existing regulation quality
while the second corresponds to the addition or re-
moval of regulator proteins. The change of one reg-
ulation sign is always performed if this regulation
is chosen, which happens with a defined probability
with the complementary probability is attributed
to addition/removal of regulator proteins. Then a
random position in the regulation interaction ma-
trix is determined and the regulation changed. New
regulator proteins are included with a randomly se-
lected regulation by a metabolite and a random reg-
ulation of an enzyme. If addition/removal of reg-
ulators is chosen then addition or removal happen
with a chance of 50 %.

Analytic tools for CE interpretation

The data that is collected from the CE can be con-
ceptually transformed to information of two differ-
ent explanatory domains: (1) information regarding
the course of the evolutionary process, (2) infor-
mation regarding regulation properties. The spot-
light of our interest is directed towards the second
kind of information and contains the diversity by
which each enzyme is regulated. If an enzyme has
a high diversity of its regulation than we assume
that the high fitness for which the individuals were
selected for did not stem from those enzymes. In
turn we interpret enzymes with a low diversity as
being important for a high fitness, corresponding to
reasons why histones are ubiquitously distributed in
the kingdoms of life with their diversity being very
low. Two other information relate to the questions
whether there exists an evolutionary drift for cer-
tain metabolite-enzyme regulation pairs. A high
evolutionary drift of either amount of regulation or
its quality (activating/inhibiting) indicates a pro-
nounced importance. Finally, we examine whether
certain metabolite-enzyme regulations are occur-
ring in pairs, e.g. that a inhibition of enzyme A
by metabolite 1 co-evolves with inhibition of en-
zyme B by metabolite 3. Nevertheless we also need
to carefully examine information of domain (1) to
evaluate the thoroughness of the CE. The measures
here are the evolution of highest and mean fitness,
the number of regulator proteins, the population di-

versity, i.e. how different are the individuals during
the evolution and the enzyme diversity which we
met already as being useful for investigation into
regulation properties. What follows is a derivation
of the previously mentioned information measures.

CE population measures

In each generation the fitness of the individuals is
computed and the maximum as well as the mean
fitness of the population is recorded. Since several
independent evolutions are conducted the average
and standard deviation of these independent evo-
lutions is formed. This information tells about the
composition of the population regarding fitness con-
tribution. It shows how well a new regulation strat-
egy with a higher fitness can invade the population,
reflected by an increase in the maximum fitness fol-
lowed by an increase in the mean fitness.

The next information is the number of regula-
tor proteins in the system. Regulators can have an
indispensable role to mute fluctuations, to provide
delayed regulation signalling and they are able to
integrate several incoming regulation to form a new
out-regulation quality for enzymes or other regula-
tors. As for the fitness the maximum amount of
regulators is collected as well as the mean over all
individuals of the population. Again the average
and standard deviation is derived considering inde-
pendent evolutions.

A classification strategy generalises regula-
tion strategies to render systems with differ-
ent amounts of regulators comparable. Dif-
ferent amounts of regulators pose the problem that
we cannot compare position-wise the regulations in
the regulation-interaction matrix since the sizes of
these matrices are different. Therefore, for a posi-
tion wise comparison we need to develop a classifica-
tion strategy that summarises the regulation strate-
gies provided by the regulators in a standardised
way. To this end we use sign conserved leaf clas-
sification strategy (scles) to accomplish this. The
enzymes are interpreted as 'roots’ that receive reg-
ulation by the metabolites, the ’'leafs’. Potential
existing regulators take the intermediacy or relay
function to transmit regulation information over a
distance and to integrate regulation. In sclcs we
delete successively the regulators and attach the
metabolites directly with the enzymes while assur-
ing that the regulation sign remains conserved dur-
ing deletion of regulators. When deleting the regu-
lators we arrive at a new regulation matrix that has
squareform with the size of the number of metabo-
lites for all individuals. This new regulation ma-
trix comparable between all individuals is hereon
called reduced regqulation matriz - RRM. There are
two mutual exclusive ways of assigning regulations
from regulators: either we focus on the regulation



quality or on the regulation quantity, i.e. how often
does one specific metabolite regulate an enzyme re-
gardless of its regulation sign.

For example consider a network in which the first
enzyme is regulated in the following ways:

T m
T; <= T3

m e
Ty — Xy

(6)

The second and the third metabolites regulate the
enzyme, while the third metabolite has activation
and inhibition quality via two regulator proteins x".
The regulation-interaction matrix is

z (0 -1 0 0 -1 1

z; \ 0 0 1 0 0 O

If we discard the regulator proteins in the given ex-
ample we get two vectors where the first (V;.) tells
which metabolites regulate enzyme 2§ and the sec-
ond (V;) informs about the number of regulators
that may relay this information:

Ve = (—a3 -3’ xgn) (8)
Vi = (0 1 1)

The two RRM-matrices containing regulation
amount (A) and quality (Q), respectively are now
formed by taking the sum of metabolites. For the
example considering only enzyme one this gives:

Ty T3 3
RRM. = 0 1 2 (9)
RRMZ. = 0 -1 0

Therefore if we investigate into properties of RRM
we have to consider which type of this matrix is
taken.

The sclcs is a classification method, it projects reg-
ulation that act via intermediary regulator proteins
to a constellation without regulator proteins. That
means that each class formed by sclcs is populated
by various kinds of regulation strategies. For the
example above the same RRM would be obtained
for among others:
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Figure 3: Procedure for determining population di-
versity. RRMs for the first and second individu-
als are shown but there are additional individuals
whose imaginary Hamming distances is shown as
well. The marked positions on the unit interval rep-
resent Hamming distances of two individuals

With the help of sclcs we can compare individu-
als and enzymes in the population to determine the
diversity of their regulation. For population diver-
sity we use the amount RRM of the individuals in
each generation. Each enzyme has as many regu-
lation positions as there are metabolites present in
the system. For each pair of enzymes we determine
the Hamming distance of the amount regulation for
each metabolic regulation position. We then have
the information how different the enzymes are reg-
ulated for two individuals. Following, we determine
the mean of the enzyme related Hamming distances
to get to know how different the two individuals
are in total, see figure [3| left. However, as the final
measure of population diversity we need a global in-
formation over the whole population that can also
be compared across independent evolutions. To
achieve this we first form a cluster tree based on the
average distances of the mean Hamming distances
between individuals as indicated in figure [3| on the
right side. We then define the scaled diversity (sD)
as the ratio of mean over maximum average cluster
distance:

mean(Cdist)

max(Cdist) ’ (11)

S =

with Cdist being the average cluster distance. We
therefore use the Hamming distance metric to come
to a metric that is more euclidian (at least some-
thing changes with the metric....2). The advantage
of the sD is that it ranges between zero and one. A
high sD means that the average individual in the
population is quite different to any other individual,
or that only one family is existent in the population.
A low sD implies that strong (meaning well pop-
ulated) and relatively different regulation families
exist.

Enzyme diversity is complementary to popula-
tion diversity. Instead of computing the mean Ham-
ming distance between two individuals vertically, as
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Figure 4: Figurative depiction of the determination
of the evolutionary drift of regulation amount. The
amount of regulation at any position in the RRM
is correlated over the generations. The interaction
A1 corresponds to xf" : z§.

shown for the population diversity approach in fig-
ure [3|on the left, we now take the mean horizontally,
i.e. we seek answer to the question of how different
is the regulation of one enzyme when cross com-
pared over the total population. We calculate the
mean Hamming distance for all cross comparisons
at each generation. Since we perform several inde-
pendent evolutions we determine the average and
standard derivation of the mean Hamming distance
of each enzyme at every generation.

CE regulation strategy measures

The enzyme specific diversity is a valuable infor-
mation also in respect with regulation strategies
as will become clear in the results section. The
next two measures to be introduces are evolution-
ary drifts regarding the two RRM regulation prop-
erties of amount and quality.
Regarding evolutionary drift of regulation amount
we investigate into RRM# as shown in the exam-
ple RRM of equation [0} It can only take positive
entries and we take the sum of all regulation posi-
tions over the total population at each generation.
Following, we correlate for each regulation interac-
tion the amount of regulation over the whole course
of the generation, a process simplified in figure [4
This correlation is performed for several indepen-
dent evolutions to arrive at the average and stan-
dard deviation of the evolutionary drift of amount.
To get the evolutionary drift for the regulation qual-
ity we use the respective RRM that conserves this
information. We then compute the fraction of neg-
ative regulation (fNR) by summing for each reg-
ulation interaction only the negative regulations
(RRM®) and divide this by the total regulation
interactions that take place at a certain position
(RRMS):

S, RRMY

> RRM
The quantity of fNR is then correlated over the
generations, and the average and standard devia-

tion of the evolutionary drift is determined in the
same way as for the regulation amount.

fNR (12)

Before measuring co-evolution of amount and

quality between two regulation interactions we need
to define a numbering procedure how we are going
to label the regulation interactions. The principle is
shown for a metabolic network with five metabolites
in figure 5} The maximum of co-evolution pairs is
given by @ with n as the number of metabo-
lites. For our example with five metabolites we
therefore have 300 co-evolution interactions. The
encoding for the different pairs follows the pattern
that in an ascending order co-evolution pairs are
listed that contain interaction 1, e.g. co-evolution
pair 152 is assigned with index 1, 1<-5:4, 1+25:24,
2+5:27, 2+25:47 and so forth, more indices are
given in figure [5] on the left. The right part of
figure |5| termed ’limit RRM co-evolution pair in-
dices’ shows the ranges of index numbers for the
co-evolution pairs given its RRM number with in-
teraction 25. For example co-evolution with label 1,
corresponding to regulation of the first enzyme by
the first metabolite, has the limit co-evolution pair
index of 24 meaning that all co-evolution pairs from
1 to 24 contain interaction 1. Interaction labelled 3
yields limit co-evolution pair indices ranging from
48 to 69 and so on.
We now look at every co-evolution pair and eval-
uate the correlation between them over the gener-
ations. The information for the correlation comes
either from the amount or quality (more precisely
the fNR) of the respective RRMs. Again the final
co-evolution values have an average and standard
deviation generated by independent evolutions.

Results

The results that are presented in the following are
generated for CEs with the purpose of developing
a hysteresis-like dynamic response. The hysteresis
shall reflect different responses of cellular systems
when nutrient concentrations are rising and when
they fall. An optimal exploitation of environmental
nutrients would have a steep increase in its uptake
rate when the ambient nutrient concentration in-
creases but a fairly shallow decrease in intracellular
nutrient equivalents for decreasing ambient nutrient
concentrations. The signal, i.e. the ambient nutri-
ent concentration, increases over time to a maxi-
mum to decrease thereafter to zero. The shape of
the signal 7" is determined by a curve following the
equation z1 = 1+ cos((t — 260) - 0.0125). The max-
imum of the curve is reached after 260 time units
(t.u.). The application of the curve function does
only start at time unit 10 to allow equilibration.
The fitness function that is essential for selecting
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Figure 5: Labelling procedure for determining co-evolution of regulation amount and quality.
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wherein SLP designate the linear slope determined
for the increasing (inc) and decreasing (dec) signal
concentration branch of the metabolic end prod-
uct, kyg is a background parameter that guarantees
a minimum value for the denominators, x4, is
the final concentration of the metabolic end prod-
uct, Corr represents the first order correlation of
the increasing and decreasing signal branch in z°"?
and R reflects the amount of additional regulators
present in the system. The first term selects for dy-
namics with high SLP;,. and low, but larger kg,
SLP4e.. The second term benefits solutions that
have not too high, but higher than k4, concentra-
tion for xjc?gal. The third term prefers solutions
with high correlation coefficients for increasing and
decreasing signal concentration, respectively. The
last term penalises increasing amount of regulator
species (parsimony pressure). Other parameters for
the CE are shown in table [

Interpretation of fitness and dynamics un-
covers inappropriate fitness function. In fig-
ure 6] the dynamics of the CEs regarding maximum
and mean fitness are shown. The inlet figure shows
the dynamics over simulation time for the fittest in-
dividuals after 100 generations for five evolutions.
Observing the fitness we see a sudden single im-
provement that dwarfs all other improvements. It
shows that the CEs evolve via punctuated equilib-
rium which lies at hand given the random homo-
geneous structure of the population [16]. Since the
standard deviation of the maximum fitness (blue
dotted line) is very high, it is probable that major
improvements were only found in some few inde-
pendent evolutions of the 30 total evolutions. Sur-
prisingly, the massive jumps in maximum fitness
are only weakly transmitted to the mean fitness,
which seems to stay at much lower fitness values.

6
10°
5 L 4
8 —fitl
a — :
g 6f fita.
a —fit5
3 & 1
% 4
? 2r i
Q 2|
£ !
[ |
100 Tzllr]v?e 400 500 600
0 -
-1r —o—MAX b
—e—MEAN
_2 - 4
_3 Il L L L =
0 20 40 60 80 100
Generation

Figure 6: Maximum and mean fitness versus gener-
ation for networks with five metabolites. The inlet
shows dynamics of the highest scoring networks in
the final generation for five independent evolution-
ary runs.

Perhaps the improvement of the fitness is so singu-
lar that every mutation that acts on the fit parent
immensely reduces its fitness, that is the found net-
work solution might not be very robust against mu-
tations. The inlet figure shows the dynamics of the
metabolic end product of the most fit networks for
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Figure 7: (a) Amount of regulator proteins in
each generation averaged over 30 independent evo-
lutions. Maximum (black) and mean (red) amount
for three metabolites or five (blue and green). (b)
The average loop size, i.e. regulation distance, per
network divided by the mean amount of regulators
is shown for networks with five metabolites.



Table 1: Computational evolution parameters for developing hysteresis response. See text for details.

n 5 enz. reg.
init. conc. 0.1 init. regs.
simul. time 510 parent selection
sign. max time 260 mutation types

sign. max conc. 2 mutation probs

individuals 50 mutations/parent
generations 100 del. dysfunct., ident.
number evol. 30 kbg

kin. par. range 0 — 10

five independent evolutions after 100 generations.
This serves to evaluate whether the used fitness
function in 13 produces the targeted behaviour out-
lined in the sections beginning. Plain-spoken this is
not the case: the inlet in figure [§] shows that the
metabolic end product rises to extremely high con-
centrations within very short bursts to immediately
fall down to zero again. Therefore, the outcome of
the evolution is not representing the dynamics that
we wished to select for using the fitness function
13. However, I will proceed in the examination of
the result since still a particular fitness function was
optimised through different network architectures.

More regulators are used for larger metabo-
lite networks. Figure compares the amount
of regulators for metabolic systems with three
(black: max, red: average) and four (blue: max,
green: average) metabolites. We realise that more
metabolites means more regulatory proteins can
survive the fitness selection. The reason for this
is probably that more regulation possibilities exist.
Among those there are necessarily more options for
beneficial regulation.

In figure the amount of loop sizes per regula-
tor are shown. Loop size means the number of in-
termediary regulators that relay information from
metabolites to enzymes. The figure shows that the
amount of regulation without regulator drops dur-
ing evolution and finally it is comparable to the
number of regulators present. The green line shows
regulation via one regulator. It starts at one which
stems from the technical introduction of regulators
which by the moment of their introduction into the
system are themselves regulated by a metabolite
and regulate an enzyme. During evolution more
and more regulators get additionally regulated by
other regulators in a way that two step (red line)
and higher step (cyan, magenta) regulations evolve.

The furthest enzyme from the fitness deter-
mining metabolite has the lowest influence.
In figure the scaled diversity is shown that is
based on the ratio of mean over maximum cluster-
ing distance. In the beginning the five metabolite
network has a higher diversity that mirrors the fact
that by random initialisation more different net-
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Figure 8: (a) Scaled diversity for three (blue) and
five (red) metabolites. (b) The Figure indicates the
evolution of the enzyme specific regulation diversity
regarding its sign.

works are generated compared to the three metabo-
lite networks. However, particularly the diversity
for the five metabolite networks drops sharply re-
producing the selection processes that throws out
inefficient networks. The fraction of inefficient net-
works is much higher for five metabolite networks
than for three metabolite networks. Since a much
larger regulation space is available for five metabo-
lite networks than for three, the likelihood of find-
ing good random starting individuals is rather low.
This results that evolution quickly converges to the
few more efficient networks. The higher the number
of metabolites the higher is the available regulation
space and subsequently the evolutionary process is
more shaped by initial networks.

A characteristic behaviour that sheds light on global
regulation principles is observed in figure It
contains the diversity of the regulation quality for
the enzymes. A general tendency for the enzymes
is that most enzyme specific Hamming regulation
diversities are decreasing corresponding to a pro-
cess that selects some superior regulation strategies
above others. Quite astonishing indeed is the be-
haviour of enzyme A and B, i.e. the first two en-
zymes in the metabolic chain, that they tend to
increase their regulation diversity in some instances
of the evolution. In all thirty evolutions the diver-
sity of enzyme A is increasing until generation 18
when it slowly drops again, still staying on a high
level. Similarly, at approximately generation fifty,
the general regulation diversity of enzyme B is in-
creasing. With a high diversity of regulation quality
one might infer that a particular regulation quality
is less important than those of other enzymes. The
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Figure 9: Evolutionary drift of the regulation amount (a) and frequency of negative regulation (b) over
the generations specific for each regulation interaction (metabolite-enzyme pair) derived from the RRMs.
The numbering of the regulation interactions is based on the RRM in equation

evolution can allow itself to search through more
different regulations for enzymes A and B than for
any other enzyme obviously without large penalties
for the fitness function score. This suggests that en-
zymes A and B have no important influence on the
fitness function which corresponds to the distance of
their catalysed reactions that are the furthest from
the metabolic end product that is the specie tested
for in the fitness function 13. In contrast however,
enzyme A catalyses the very first reaction, i.e. the
committed step in the metabolic pathway, which is
generally assumed to be outstanding important for
regulation of metabolic pathways [20].

Evolutionary drift of regulation amount and
quality acts differently on enzymes and
metabolites. Figure [J] shows the results of evo-
lutionary drift for regulation amount and quality
((a) and (b), respectively). The numbering of the
regulation interactions is:

af' agytowyowl o ag
a ([1] 16 21
a4 12 17 22
¢, 8 18 23 (14)
a5 14 [19] 24
s, 10 15 20 25

This matrix summarises and clarifies the results
presented in figure[J] by using frames to codify note-
worthy behaviour in the amount of regulation of fig-
ure [9(a)| and colour to represent special regulation
quality features of figure There is a high back-
ground standard deviation in all following graphs.
The reason for this is that in each independent evo-
lution it is likely that different strategies did evolve
to maximise the fitness. Indeed it is our hope that
different regulation strategies evolve. Furthermore,

each regulation position is subjected to random mu-
tational noise. I will proceed in the analysis of the
results despite their association with high standard
deviations. I think it is even more assuring that
intelligible tendencies did pop up despite the back-
ground variations. The amount of regulation over
the generations is increasing for nearly all regulation
interactions. Only regulation interaction # 17 de-
creases slightly but with a high standard deviation.
In this interaction the fourth metabolite controls
the second enzyme. It is also true, however, that
there is only minor growth in regulation amount
after the tenth regulation interaction. That is reg-
ulation that emanates from metabolites 3,4 and 5
in general is not subjected to evolutionary drifts.
In contrast there is a strong accumulation of regu-
lation flowing from the first metabolite towards all
enzymes and also for the second metabolite this ef-
fect can be observed in a slightly muted form. Reg-
ulation send by the first metabolite seems to play
an important role for the dynamics that are selected
by the fitness function. Interestingly there are regu-
lation amount peaks for metabolites on their corre-
sponding enzymes (interaction 1, 7, 13, 19), hereon
called cognate interactions, but whereas the first
cognate interaction is positively regulated all others
are negative, see also matrix Particularly cog-
nate interactions 19 and 25 become negative dur-
ing evolution, i.e. the fourth metabolite inhibits
its transformation into the metabolic end product,
which in turn inhibits its degradation. Enzyme
D but very pronounced enzyme E are negatively
regulated by many metabolites. In contrast the
first enzyme is largely positively regulated by the
first metabolites. In essence a model system de-
rived from the statistical results would display feed-
forward dynamics while accumulating mass. The
uptake is positively regulated whereas the outflow is
inhibited. An additional interesting fact is that the
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Figure 10: Shown is the amount interaction in-
terference graph. The inlet shows the original
amount interaction interference graph without
standard deviation (STD). The larger figure is
derived by dividing the mean of the inlet fig-
ure for each interaction pair by its STD. Blue:
complete interaction pairs containing metabo-
lite 1; green: subset of interaction pairs with
met.2; red: subset of int. pairs met.3; yellow:
int. pairs including met. 4; cyan: met.5 assoc.
pairs.

regulation amount is controlled by the metabolites
whereas the regulation quality depends more on the
regulated enzymes, corresponding to a more verti-
cal orientation of framed boxes in interaction matrix
[[4] and horizontal orientation of colours. Similar re-
sults are obtained for networks with three metabo-
lites (not shown).

Co-evolution reflects properties of evolution-
ary drift. Figure shows the extend of co-
evolution for interaction pairs regarding the amount
of regulation that is realised for each member in
the pair. Two ways of graphical representation are
chosen: the small inlet figure shows the absolute
amount correlation for interaction pairs as average
for thirty independent evolutions, the main figure
presents this very amount correlation divided by its
standard deviation (STD) of the thirty evolutions.
This latter normalisation is chosen because in most
cases the STD of the correlation is much higher
than the average which would render their simul-
taneous plotting extremely messy. Since, however,
both information is essential for an interpretation
the ratio of the average and STD is taken to arrive
at a combined measure. The first impression one
has when looking to the main figure in is that
of a damped oscillation/signal which is swallowed
by some background noise. Normally patterns for
such kind of muted signal would be analysed using
a Fourier analysis, however we possess all informa-
tion that is necessary to understand the principle
features of this weird phenomenon. First, we ex-
amine the first four peaks, they seem to be quite
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Figure 11: Information of the regulation qual-
ity interaction interference correlation is plot-
ted against their respective interaction interfer-
ence. Values close to 1 designate co-evolution
of interaction pairs towards higher frequency
of negative regulation, -1 towards higher fre-
quency of positive regulation. Most STDs are
significantly higher than their mean and are
omitted for clarity.

significant since they are dignified with a higher av-
erage correlation than STD given that they are far
above one. The inlet figure shows that the four
peaks have correlation coefficients between 0.6 to
over 0.7, which is quite impressive given thirty in-
dependent evolutions and also in comparison with
one interaction over generation alone given in figure
9(a)| which does not have higher correlations. This
sheer magnitude of correlation tells us that some
interactions are more responsive to other existing
interactions than with respect with their own effect
on the evolution. This effect can be explained if
we assume that in each evolution there is a limited
number of regulation families. Then no interaction
can act in solitude but instead depends on exist-
ing regulations and only if some existing regulations
evolve in a similar way a specific interaction can be
effective, or will otherwise be diluted by evolution.
Now we need to interpret the exact locations of the
peaks. The most distinguished peaks occur in the
blue region, that is they are connected with the
first metabolite. The outstanding importance of
this metabolite was concluded already in response
to ﬁgure The major peaks are at indices 1, 25,
48 and 70 and considering figure [5| to decrypt the
interaction pairs we realise that the high correlation
reaction pairs are between metabolite 1 regulating
enzyme A (1A) and metabolite 1 regulating enzyme
B (1B), shortly written as 1A:1B for the first peak,
1B:1C second peak, 1C:1D third peak and 1D:1E
fourth peak. These are exactly those reactions that
all lie on the vertical axis of the squared interac-
tion matrix in[I4]that designate increase of amount



over generations. Therefore, we can come up with
a very simple and straightforward explanation for
the high peaks, namely since all those interactions
seem to rise during evolution also looking at their
co-evolution gives impression of dependency since
both interaction in the pair are increasing. The
same argument applies to the immediate tail after
each prominent peak: the first peak is followed by
three large sub-peaks characterised by interactions
1A:1C, 1A:1D and 1A:1E. The length of those tails
decrease for the later prominent peaks since there
are less downstream regulations possible, e.g. for
the second large peak only pairs 1B:1D and 1B:1E
the next regulation would be 1B:2A (index 28) for
which the amount correlation drops below 0.2. Up
to now the investigation focused on amount inter-
ferences for metabolites. The dashed, grey sub-grid
until index 111 marks positions for interaction pairs
that share the same enzyme. And here as well we
can distinguish trends. For example from indices
1 to 25 in figure there are four sub-grid marks
representing interaction pairs 1A:2A, 1A:3A,1A:4A
and 1A:5A in which the five different metabolites
regulate enzyme A. All those interaction pairs have
a slightly higher amount correlation compared to
their surrounding best visible in the inlet figure.
The same is true to some extent for all other en-
zymes. That means that if enzyme A is regulated
by any metabolite the probability to become also
increasingly regulated by metabolite 1 is high.
Another interesting feature are the declining nega-
tive correlations just before the x-tick labels. They
indicate a diametric evolution of regulation amount
of the interaction pairs 1A:5E, 1B:5E, 1C:5E and
1D:5E. Only the interaction pair 1E:5E, the last
bar in the inlet figure, contrasts this development
due to the tendency that intra-enzyme co-evolution
is positively amount correlated. This negative reg-
ulations imply that an increase of the regulation
send by the first metabolite occurred together with
a decrease of the regulation in which the metabolic
end-product controls its own degradation. Advo-
cating again the generation correlated amount in
figure we realise that there is no pronounced
negative tendency of the regulation interaction 5HE.
I hope it became clear that most of the peaks can
be intelligibly explained and that their occurrence
despite massive STD is striking. I guess for each
peak a good explanation could be found.

In contrast there are no visible peculiarities con-
cerning the correlation of the regulation quality be-
tween interaction pairs distinguishable as shown in
figure Only there seem to be some stretches
of more negative correlation for example twelve in-
teraction pairs following index 91 corresponding to
interaction pairs from 1E:2A to 1E:4B. But these
correlations are weak.

Discussion

Hysteresis was taken as target behaviour while the
resource has a bell-shaped like dynamic. As we have
seen in figure [f] the fittest individuals behave not as
we would have liked to see. Therefore the regu-
lation characteristics might not reflect good regu-
lation strategies for hysteresis. On the first glance
these regulation strategies are (cf. matrix: inhi-
bition of the last enzyme that catalyses breakdown
of the metabolic end-product; activation of the first
enzyme that catalyses the committed step of the
pathway while this committed step has the lowest
influence on fitness; inhibition of cognate reactions
in the pathway. We can predict that this regulations
lead to a large accumulation of metabolic compo-
nents as we are ascertained by figure [§] However,
some words of caution need to be expressed. We
claim that a high enzyme diversity can be inter-
preted as a low contribution of an enzyme to the
fitness, however any of those very different regu-
lations might have a higher impact on the fitness
than the regulation strategies that are more homo-
geneous throughout the population.

An interesting result of this study, that does not
show regulation principles directly, is that regula-
tion amount evolves with the metabolites while en-
zymes tend to accumulate homologous regulation
quality. The first observation states that metabo-
lites are more important for regulation than en-
zymes. In this study regulation hubs, nodes with
many regulations, are more likely to be associated
with metabolites than with enzymes. In our case
one hub would be the first metabolite that experi-
ence a steady increase in the regulations in which
it joins reflected by a high correlation coefficient of
regulation amount over the generations (cf. .
A caveat is that currently no parsimony pressure
regarding regulations in the regulation interaction
matrix W (e.g. see matrix [4)) is implemented, we
can therefore not exclude that some increase in reg-
ulation amount is due to ’regulation bloat’ akin
to ’code bloat’ [14] [B]. A very interesting evalu-
ation of this result, i.e. different applicability of
amount and quality, would look to biological en-
zymes whether they have a tendency of homologous
regulation (meaning more activated or more inhib-
ited) current databases provide opportunity for this
(e.g. EcoCyc [12]).

There are some issues regarding the process of
the computational evolution that need to be dis-
cussed. For the present study no parameters have
been changed, that is metabolic conversion rates
and the degradation rates of enzymes remained
constant, similarly the slope and the standard en-
zyme synthesis rate were constrained (see equation
|I). This was chosen to restrict the size of the reg-
ulation surface that needs to be explored by the
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CE. This excludes parametric regulation strategies
that have been shown to provide essential regula-
tion capacity for example to increase noise stabil-
ity of the bacterial heat shock response [4] or that
can in general bend the network dynamics towards
many responses and therefore questions the simple
motif-function distinction [9]. Accordingly, Adiwi-
jaya et al. have investigated into simple signalling
networks and optimised the parameters in response
to defined performance goals [I].

In our model metabolic pathways all metabolic con-
version reactions are irreversible, this needs a justi-
fication since most reactions in biological metabolic
networks are reversible. That is we hope that us-
ing irreversible reactions our results might still be
applicable to metabolic networks. What makes us
thinking this? I cannot give definitive answer to
this, but an argument could look like that every
metabolism evolved with the purpose of a direc-
tion, for example simply spoken glycolysis destiny
is pyruvate. Therefore, we only include the destiny
in our abstract model and a separate study must
examine the effect of reversible metabolic reactions
on regulation. Perhaps this problem was already
tackled by the MCA or BST community.

Regulation in general can either be applied by
changing the activity of an enzyme or its abun-
dance [8]. In this study we largely focus on regula-
tion by the means of changing enzyme abundance.
We could try to find an implementation of the
metabolic networks that allows changes in the en-
zyme activity. This is accomplished if the metabolic
conversion rates are functions of the metabolites.
The function that integrates regulation would then
probably take the form of more sophisticated ki-
netic laws like for example Michaelis-Menten equa-
tions for inhibition and activation. It would be a
promising long term objective to ask when a regu-
lation is likely to be regulated via its amount or its
function.

Surely the approach using computational evolu-
tion is not the only solution to answer the funda-
mental questions introduced in the beginning. One
other option I want to mention that can be used
to identify preferred purpose dependent regulations
is Bayesian inference. The posterior probability
p(X|D) that we would wish to obtain would be the
probability of a fitness X given a regulation strategy
D. This could be obtained with the help of for ex-
ample a Gibbs sampler to test the fitness of various
regulation strategies which would give us the like-
lihood p(D|X), i.e. the probability of a regulation
given a fitness. That sounds weird but is identical
to a statistical analysis of fitness-regulation correla-
tion that was also used in this work. Of course we
still need the probability of the evidence p(D) and
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an appropriate prior p(X):

p(DIX)p(X)

p(X|D) = (D)

(15)

One of the main issues of the whole study is the
choice of the fitness function. With its help we want
to attach biological meaning to the CE and its cor-
rect choice is pivotal. In the presented work we
have seen that the fitness function used in equation
13 did not adequately represent our original bio-
logical thinking. Currently it seems the only way
to arrive at appropriate dynamics it to use a trial
and error approach in finding fitness functions and
to selectively discuss only ’biologically successful’
CEs. An interesting study that can help in this re-
spect comes from the group of Uri Alon. In one
article by Kalisky et al. they investigate into how
environmental signals are transmitted into a certain
shape of gene expression [I1I]. They quantify the
gene-regulation function of the lac-operon in E. coli
that is the optimal response of synthesis of lactose
metabolism enzymes in response to an environmen-
tal stimuli, whose form they also could determine.
Therefore, at least for the lac-operon there exists
now a fitness function accompanied by an pertur-
bation that we could take biologically measured ref-
erences.

Outlook

New mutational regimen to test regula-
tion exploration. In the current version of
the CE-code the mutational algorithm needs to
be improved. This is a minor technical issue.
A major conceptual task is to include a second
mutation regime to prove that the exploration
of the regulation-fitness solution space is strong
enough for statistical claims. Currently, mutations
act in a way that regulation quality and regulator
changes have a probability of 50 % but that exactly
one mutation will occur. A different mutation
regime would be if for example the probability
for regulation quality and regulator amount is
still exclusive, but that regulation quality in the
regulation matrix W has a index specific mutation
chance. That means that each position in W
has a low probability that at this very position a
mutation of regulation quality can occur. We do
not know in advance how many, if at all, mutations
will strike an individual. This mutational regime
should in principle allow a better exploration of far
distance regulations, but in principle similar results
as the current mutation regimen must be observed.

Parsimony pressure for regulation to guaran-
tee minimal, necessary regulation strategies.
As we have seen in figure [f] there exist an increase



in the regulation amount for some regulation strate-
gies, but as mentioned earlier, we can currently not
strictly discern between necessary regulations and
regulations that amassed due to regulation bloat.
It might therefore be advantageous to not only in-
clude parsimony pressure regarding the amount of
regulators but also to include parsimony pressure
that reduces unnecessary complexity of regulation
entries in the regulation matrix W.

Regulator proteins are not used to generate
hypotheses. The procedure of sclcs and the gen-
eration of RRMs strips away direct appearance of
regulator proteins. The RRMs are then used to
suggest regulation strategies that are optimal for a
given input-output problem, which is our hypothe-
sis. Due to the analytical method regulator proteins
are not an essential part of the final hypotheses. It
is therefore also a burning question whether reg-
ulator proteins are an essential component in the
development of hypotheses. One can think a lot
about this, however final resolution might only by
achieved when performing the same kind of CE pre-
sented in this report but excluding regulator pro-
teins. Regulators may have for example a function
to provide time delayed regulations or other func-
tion like integrating signals. Some input-output dy-
namics might depend on those functionality while
others do not. It would be difficult, if not impossible
to assess a priori the need for regulatory proteins.
Obviously, an elegant solution would be if the parsi-
mony pressure itself can manage this necessity, such
that the CEs decide internally about the necessity of
regulator proteins. However this latter mentioned
internal decision process is extremely difficult to re-
alise. Constructing the parsimony pressure to high
obstructs exploration of regulator protein regula-
tion even when it is necessary, while too low par-
simony pressure leads to unavoidable accumulation
of regulators.
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