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Abstract

The bacterium Bacillus subtilis lives in the environmentally diverse soil habitat. Various
stresses challenge B. subtilis, and its stressosome is one of the sensors for physical and
chemical insults. This pseudo-icosahedral complex is composed of three protein classes:
1) the sensor RsbR, 2) the scaffold RsbS, and 3) the kinase RsbT. Stimulation of the
stressosome modifies its phosphorylation patterns and protein interactions, and results in
the dissociation of RsbT. Cytoplasmic RsbT activates an additional cascade, ultimately
releasing the general stress response transcription factor ¢B. Biochemical and molecu-
lar biological experiments have identified the reactions and interactions of the proteins,
but these techniques are currently unable to identify structure-related functions. By con-
trast, computational models can consider the geometry of the stressosome, but despite
this advantage, no such model exists for the stressosome. Using cellular automata, I
introduce here the first computational models for the stressosome. Futhermore, the icosa-
hedral structure enables the construction of a geometric model by modular origami folding
that highlights motions within icosahedral structures. The conditions associated with the
release of 0P are amenable to ordinary differential equation models, which I used to re-
produce the dynamics of a reporter protein. My analysis shows that different stimuli are
processed identically, suggesting their identical perception. Theoretical reproduction of
the dynamics of a reporter protein show that the proteolytic decay of the reporter protein
is part of the oB-mediated general stress response, which was confirmed by subsequent
experiments. The thesis confirms the activation effect of RsbR-P on the kinase activity
of RsbT and the preferential dephosphorylation of RsbS-P over RsbR-P by RsbX. The
Collapse Hypothesis suggested in this thesis, concerns information transmission between
RsbR and RsbT and suggests a coordinated motion of three dimers. The modelling pro-
cess emphasizes an activation loop for RsbT that disconnects the duration of response
from that of the stimulus. Overall, the new insights enhance our understanding of the oB-
mediated general stress response and raise our awareness of the environmental integration
of B. subtilis.






Zusammenfassung

Das Bakterium Bacillus subtilis lebt im Boden und ist dort verschiedenen Umweltreizen
ausgesetzt. Ein Teil dieser Reize wird durch das Stressosom aufgenommen. Diese komplexe
Struktur von pseudo-ikosahedraler Geometrie besteht aus drei Proteinklassen: 1) dem Sen-
sor RsbR, 2) dem Geriistprotein RsbS und 3) der Kinase RsbT. Durch Stimulation des
Stressosoms veréndert sich sein Phosphorylierungsmuster, was die Interaktionen der Pro-
teine verandert und zur Dissoziation von RsbT fiihrt. Das frei-werdende, cytoplasmatische
RsbT aktiviert eine weitere Signalkaskade, die schliellich zur Freisetzung des Transkrip-
tionsfaktors ¢P und zur allgemeinen Stressantwort fithrt. Durch biochemische und mo-
lekularbiologische Anséitze konnten die Reaktionen und Interaktionen aufgekldrt werden,
jedoch sind diese Techniken ungeeignet, Informationen zu strukturbezogenen Funktionen
zu liefern. Obwohl im Gegensatz mathematische Modelle die Geometrie des Stressosoms
beriicksichtigen kénnen, gab es bisher noch kein Modell zum Stressosom. In dieser Ar-
beit stelle ich die ersten rechnerbasierten Modelle zum Stressosom auf Basis zelluldrer
Automaten vor. Zusétzlich kann dessen ikosahedrale Struktur durch ein geometrisches
Model auf Basis von Origammi-Falttechniken reproduziert werden, was Informationen zu
Domsénenbewegungen liefert. Die Bedingungen der Freisetzung von oP erlauben die An-
wendung von Differentialgleichungen, mit denen ich die Dynamik eines Reporterproteins
nachvollziehe. Meine Analysen zeigen, dass unterschiedliche Signale identisch verarbeitet
werden, was nahelegt, dass diese Signale auch identisch aufgenommen werden. Die theore-
tische Reproduktion einer Reporterproteindynamik zeigt, dass der proteolytische Abbau
des Reporterproteins Teil der ¢ induzierten allgemeinen Stressantwort ist, was durch
nachfolgende Experimente bestéitigt wurde. Die vorgestellte Kollapshypothese beschreibt
den Informationstransfer zwischen RsbR und RsbT, und legt eine koordinierte Bewegung
von drei Proteindimeren nahe. Die Modellierungsarbeiten verdeutlichen eine Aktivierungs-
schleife von RsbT, die eine Trennung der Dauer der Stressantwort von der Signaldau-
er bewirkt. Damit stellt diese Arbeit neue Erkenntnisse zur oP-induzierten allgemeinen

Stressantwort vor und vertieft unser Versténdnis der Umweltanpassung von B. subtilis.






Theses

Ulf W. Liebal, Regulation of the general stress response of Bacillus subtilis

Major new insights

1. Different stressors activate the stressosome signalling protein complex identically.
Thus, according to the stressosome, a stress of 3% ethanol is as stressfull as
488 mM of NaCl.

2. Structures of truncated icosahedra (vertices as proteins) allow a characteristic
collapse of three dimers. This collapse hypothesis of stressosome activation

explains the information transfer from the stress sensor to the output protein.

3. Discrimination of differential equation models of the general stress response
suggests a protease that degrades the reporter protein. This protease model

reproduces the stimulus-independent transient activation of the stress response.

Independent confirmation of knowledge

1. Geometric models show that truncated icosahedra are optimally constructed from
dimers. In these models, sixty tetrahedra coincide in their structural arrangement

with the arrangements of proteins in the stressosome.

2. A cellular automaton confirms the stimulating effect of phosphorylated RsbR on
the kinase activity of RsbT by reproducing different experimental data sets.

3. The fit of the cellular automaton of the stressosome to experimental data is
optimal, if the phosphatase RsbX is specific for RsbS-P during low and medium
stress, and dephosphorylation of RsbR-P is magnitudes lower.

4. Stress reception of the stressosome leads to structural changes and the activation of
a signalling molecule. The slow deactivation of the stressosome repeatedly activates

the signalling molecule and decouples the reponse from the signal duration.
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Chapter

Introduction

Knowledge of bacteria equals knowledge of life. The eminent microbiologist
Moselio Schaechter muses in his research blog on the effect of the extermination of multi-
cellular life by an asteroid [Schaechter|2012]. The community (presumably microbiologists)
agrees that prokaryotes would experience comparably minor effects, and over time, a
multi-cellular biosphere, as we witness today, would eventually re-evolve. Life on earth is
predominantly prokaryotic (bacteria and archaea) in terms of biomass and environmental
distribution [Whitman et al.|1998]. Bacteria are virtually everywhere: they have colonized
the hydrothermal vents in the deep sea [Hugenholtz et al.[1998], the dry and frigid valleys in
Antarctica [D’Amico et al.[2006], and even the metazoan bodies, where they are pursued
by the immune system |[Willing et al. 2011]. Indeed, given this wide distribution and
environmental tolerance, an asteroid impact would have little effect on the bacterial world.
What is the source of the bacterial success? Among the characteristics of bacteria is the
ability to survive in harsh environments, as well as the capacity to respawn rapidly in
favorable conditions. This thesis focuses on the bacterial stress response, particularly the
molecular mechanisms that allow them to adapt to environmental challenges. Of course,
the number of bacterial species is innumerable and all are subjected to different challenges
so that any choice might appear arbitrary. However, only a few species are accessible
to lab experiments and are therefore characterised well enough to provide the requisite

knowledge for mathematical modelling.

1.1. The model organism Bacillus subtilis

One of the outstanding bacterial species in terms of knowledge and experi-
mental accessibility is Bacillus subtilis. This organism belongs to the Firmicute phy-
lum with positive Gram staining and low G-C, and is a member of the subtilis-licheniformais

group in the Bacillus genus [Barbe et al. 2009; Rey et al|2004]. Members of this group
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are heterotrophic and can be found in diverse environments such as the soil, plant roots,
leaves, bird feathers, and the gastro-intestinal tract of animals [Barbe et al.|2009; [Earl
et al.2008; Rey et al.|2004]. The ubiquitous presence of this bacterium is due to its ability
to form spores, highly resistant dormant cells [Earl et al.|[2008]. Another distinguishing
phenotype of B. subtilis is competence that enables the organism to assimilate and inte-
grate the DNA of closely related Bacillus strains. In addition to enabling the exchange of
mutational innovation in a colony during stress, competence has been particularly useful
for the genetic manipulation of B. subtilis. The ease of cultivation, genetic accessibility,
and non-pathogenic nature of B. subtilis combined with its agricultural applicability makes
it one of the best-studied model organisms, second only to Fscherichia coli. Indeed, the
complete genomes of both these outstanding model organisms were published in 1997 after
10 years of sequencing [Blattner et al.|[1997; Kunst et al||1997]. This wealth of genomic
information spurred the identification of transcriptional and regulatory networks [Fadda
et al[2009; Goelzer et al.|2008]. In Chapter@7 I provide a review of how mathematical
modelling has been used to harvest this knowledge and how computational approaches

have contributed to our understanding of signalling.

1.2. Phenotypes for environmental adaptation

B. subtilis is equipped with several behavioural strategies, most notably
motility, matrix production, competence, sporulation, and the general stress
response [Lopez et al.2008]. This diversity of response strategies reflects the diversity
of the environmental changes experienced by the organism. B. subtilis is subjected to rela-
tively abrupt temperature variations of up to 20 °C during the day-to-night shifts, and the
summer /winter seasons impose an enormous temperature difference of 40°C. When rain
showers flood the surroundings, the osmotic gradient between cell and soil can increase
perilously, leading to osmotic-driven water inflow, swelling, and eventually cell disruption.
To maximise survival during these challenges, a B. subtilis colony becomes phenotypically
heterogeneous, with the organism beting on the best response [Dubnau and Losick 2006;
Veening et al.[2008alc]. This phenotypic diversity was visualised for colonies in Petri dish
micro-environments, and the illustration in Figure summarizes the findings [Lépez and
Kolter|2009; Vlamakis et al.[[2008]. This illustration represents the locations of the four
major phenotypes of growth of B. subtilis after about 70 h of incubation.

The motility phenotype is characterised by cells that are loosely integrated into an
extracellular matrix. These cells produce flagella and can move to locations with better
conditions. Movement is energy intensive and thus sufficient food sources must be available
[Lopez et al.|2008; [Shioi et al.||1980]. Figure simplifies the findings of |Vlamakis et al.

[2008] who found motility predominantly at locations rich in food, such as the colony-



1.2. Phenotypes for environmental adaptation

®Motility ®Matrix

Figure 1.1.: Location-dependent phenotypes of a B. subtilis biofilm in a Petri dish. The
photo at the top depicts a biofilm after 72h of incubation (adapted from [Vlamakis
et al|[2008]; black scalebar: 1cm). The spatial location of the phenotypes is taken
from Lépez and Kolter [2009] with the exception of the o8, which is hypothetical. The
microscopic images of motility, matrix, and sporulation are extracted from Lépez et al/|
, whereas that of o is adapted from |Locke et al.| ﬂ2011ﬂ.

medium interface. By contrast, matrix producing cells are immobile, they excrete polymers
to provide the colony with integrity [Vlamakis et al.[2008|. The illustration in Figure

indicates that the matrix producers are predominantly distributed in the colony center

[Vlamakis et al.[2008]. In the colony, matrix production is a requisite for the development

of sporulation [Aguilar et al.|2010]. Sporulation is induced following severe starvation and

high cell densities [Sonenshein|2000]. The resulting endospores are small dormant cells

surrounded by a mother cell, as shown by the microscopic images from Lépez et al.| [2008]

in Figure [1.1] The fourth phenotype shown in Figure is the general stress response

mediated by the transcription factor oB. Strictly, it is not a separate phenotype, as cells

with activated oP are difficult to distinguish from those with silenced o®. However, o

inhibits other phenotypes like sporulation |[Reder et al[2011] and there are as many genes

activated by o as for chemotaxis or matrix producers [Helmann et al.2001; Nannapaneni|
et al,[2012; [Petersohn et al.|2001; Price et al,)2001]. P is activated by various non-fatal
stresses like ethanol, salt, or UV- and infrared light [Hecker et al.[2007; jvan der Horst et al.|
2007]. While there are no studies regarding the localisation of o® expression in a colony, I

added putative locations based on the available knowledge regarding o® activation. The
upmost region appears likely, as the light intensity and oxygen concentration is highest
there, and the food source is far, but the cells are not as stressed as in the center of the

colony where sporulation dominates.
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Figure 1.2.: B. subtilis (blue rods) is abundant in the soil and needs to adapt to a variety
of challenges. The stressosome (pink icosahedron) is sensitive to light, ethanol, and
salt stresses, among others, and activates the transcription factor o (green star). oB
induces expression of stress-protective genes (red, stripe-filled oval) with an eventual
adaptation to the challenge.

1.3. The oP-induced general stress response

Environmental changes usually trigger alterations in the proteome and changes

in the phenotype to ensure the optimal subsistence of an organism (Figure [1.2))

[Buescher et al.|2012; Nicolas et al.|2012]. The o® response is activated in response

to non-life-threatening conditions. T'wo proteins, RsbU and RsbP, feed either environmen-

tal or energy stress signals to the o® network [Vélker et al.|[1995b]. This thesis focuses on

oB activation by environmental stresses via RsbU. In this context o® activation can be

summarized by the following four steps [Hecker et al.|[2007]:

1. Activation of the stressosome,

2. Release of an enhancement protein,

3. Release of the transcription factor o®,

4. Adaptation of the organism.

The stressosome of Step [1]is a signalling hub, targeted by different stimuli [Marles-Wright

land Lewis 2007]. However, with the exception of light, the environmental stimuli are

believed to activate intermediary sensors, which then transmit the signal to the stressosome

[Marles-Wright et al. 2008]. These sensors stimulate phosphorylation reactions on the

stressosome |Gaidenko et al|[1999], causing the enhancer protein RsbT to dissociate from
the stressosome and become available in the cytoplasm (Figure [1.3) [Marles-Wright and|
2007|. The stressosome is a highly symmetric protein complex with proteins in static
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Figure 1.3.: Scheme of the investigated signalling pathway of the oB-induced general
stress response. Light and ethanol (EtOH) induce the dissociation of the enhancement
protein RsbT (star) from the stressosome (icosahedron). Cytoplasmic RsbT activates
RsbU which in turn dephosphorylates RsbV. Desphosphorylated RsbV induces the re-
lease of the transcription factor P from RsbW. Subsequently, ¢® stimulates the expres-
sion of several proteins, among them RsbX, a phosphatase that resets the stressosome
to its pre-stimulus level, S-galactosidase, a protein used to monitor ¢ activity, and
PaseX, an unidentified protease of 5-galactosidase found in the context of this thesis.

positions. Cellular automata are ideal to represent these properties, as they can include the
spatial information. Kinetic modelling is inferior for the stressosome, because is requires
more complex partial differential equations to represent space, and each protein interacts
with a limited number of proteins that may or may not be phosphorylated; therefore, the
phosphorylation status cannot be approximated by a real number. Current experimental
techniques are ill-suited to characterise the effect of interactions in a given geometric
structure. This hinders the process of formulating and testing mechanistic hypotheses.
An alternative way is to generate hypotheses via computational modelling and to probe
their effects in silico. In Chapter[3, I introduce a model of stressosome activation that is
based on the dynamics of single proteins in the stressosome. Although the proteins form
dimers, their treatment as monomers in the simulation allows for a broad reproduction
of published experimental data. In a second model, introduced in Chapter [4, I assume
triangles of dimers as the basic functional unit because this structure appears to be an
important geometric property of truncated icosahedra. These models integrate the current

knowledge of reactions in the stressosome and allow the testing of new hypotheses.

0B, and the related SpolIA network, are regulated by a characteristic mechanism called
‘partner switching’ [Hecker and Volker|[2001; Hecker et al.[2007; |Price/2002]. The partner

switching occurs twice during signal transduction in ¢® activation: first, RsbT switches
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between its partners RsbS in the stressosome and RsbU; second, RsbW switches between
its partners RsbV and ¢B. Indeed, both partner switching modules are related; RsbT is
homologous to RsbW, and RsbS is homologous to RsbV [Yang et al|/1996]. Figure
reflects the reactions of the general stress response in greater detail. During stress-free
conditions, the enhancement protein RsbT (star) is inhibited by its partner RsbS in the
stressosome (icosahedral icon), and the transcription factor ¢® is inhibited by its partner
RsbW. Upon stress stimulation, e.g. by light or ethanol, RsbT dissociates from RsbS into
the cytoplasm and associates with its second partner, the phosphatase RsbU. RsbU is
activated by RsbT, resulting in the increased dephosphorylation of RsbV. Because non-
phosphorylated RsbV binds very efficiently to RsbW, RsbW switches ¢ for RsbV. This

partner switch releases oP and enables the re-organisation of the proteome.

A change in the environment is usually accompanied by a change in cellular consti-
tution |Gottesman| 2003]. New proteins are transcribed and replace previous ones. The
transcriptional activity of oP is measured using a reporter gene with a promoter contain-
ing a o binding sequence. One of the most common reporter genes is lacZ, encoding
the B-galactosidase protein. However, the B. subtilis B-galactosidase is not o dependent.
To enable its use, the promoter of the oP-dependent gene ctc was cloned upstream of a
heterologous lacZ [Benson et al.[[1989]. The antagonistic process to transcription is pro-
teolysis, an essential ingredient to adjust the cellular proteome, especially during stress.
Price et al. [2001] detected the up-regulation of five proteases following the stimulation of
the general stress response by ethanol and salt. Later, ClpP was added to the list of o
affected proteases [Reeves et al[|2007]. Analyses of experimental data become problematic

if the reporter protein is subjected to both synthesis and proteolysis.

However, the joint effects of synthesis and proteolysis on oP-induced B-galactosidase
expression is the ultimate conclusion in a series of experiments described in Chapter [5
These experiments were performed in a strain in which the expression of ¢® can be ex-
ternally controlled by the addition of isopropyl [-D-1-thiogalactopyranoside (IPTG, a
non-metabolizable sugar derivative). Because IPTG is a stable chemical compound, a
continuous expression of the oB-dependent -galactosidase reporter gene was expected.
Strikingly, S-galactosidase activity decreases at a time during which IPTG is still avail-
able. The timing and rate of the decline both depend upon the ambient IPTG concentra-
tion. After formulating different hypotheses and testing them in silico, it was found that
only a model representing the degradation of S-galactosidase by a oB-dependent protease
could conclusively reproduce the data. Subsequent experiments confirmed this oP-related

instability, though the protease remains unidentified.
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B. subtilis is well-studied, and has stimulated the application of mathematical modelling;
I discuss the diversity of mathematical studies related to signalling in Chapter[4 The in-
triguing environment-specific phenotypes of B. subtilis are difficult to explain by reducing
the arguments to only a few molecular players; therefore mathematical modelling and
simulation played an important role early on. Sporulation, competence, and also chemo-
taxis are prominent examples of remarkable developmental and signalling processes apart
from which the general stress response appears unspectacular. This moderate phenotype
change is probably the reason for the late discovery of the oPB-mediated general stress
response in the early 90’s of the past century |[Benson and Haldenwang 1992; Kalman
et al.[|1990], with major insights into the mechanism being achieved only in the first years
of the 21st century [Hecker and Vélker|2001; Price/2002]. Mathematical modelling of B
began in 2007 [[goshin et al. 2007], with a second model published in 2011 [Locke et al.
2011]. The stressosome is a fascinating complex; however, details of its construction and
function remained vague even longer, until 2008, when its structure was eventually solved
[Marles-Wright et al.|2008].

1.4. The truth of numbers

In the opening quote of this thesis the writer Klavki asks: “what is two
times two?” His friend replies, “the liar would claim it to be five - the neutral one would
say neither two nor five - the cautious esoteric would offer something like the logarithm
of 10000.” Klavki then suggests ‘4’, but the friend reacts with a scornful remark. What
happened? Imagine that ‘4’ is our observation and we want to explain its origin. We start
to prepare a model, for example, ‘2 + 3’, and simulate it using the ‘=’ sign. The result
for that model is ‘5’, which is false, as also stated in the quote. We improve our model
to ‘2+ 2, which gives us ‘4’. Although this is correct, it does not truly explain our data.
Presumably, we get new insights, and perhaps we can better predict experimental results,
but, just like any model, ‘2 + 2’ is a simplification, and an abstraction. We can identify
an infinite number of mathematical expressions/models, such as ‘logio 10000, that suit
our observation(s), but mathematics is just the tailor to coat reality [Leach|[2011]. The
quote implies that anyone who is content with a correct result will miss the fantastic part.
An opposing but equally esoteric view purports the mathematical universe hypothesis:
every piece of reality is math and we are getting increasingly better in approximating it
[Tegmark||2008]. Whichever claim approximates reality closer, ‘mathematics is biology’s

next microscope, only better’ [Cohen|2004].

Like many interdisciplinary sciences, systems biology was not invented but instead it
developed over a long period. Systems biology draws heavily on enzyme kinetics; thus,

the mathematical interpretations of enzyme catalysed reactions can be regarded as its
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first step. One of the most celebrated enzyme equations is the Henri-Michaelis-Menten
equation, formulated in its most general representation by Briggs and Haldane in 1925
[Briggs and Haldane|1925]. The theory of enzyme activity expanded to include inhibition
and activation effects and also the description of multi-enzyme complexes and allostery
using the Monod-Whyman-Changeaux (Concerted) or the Koshland-Nemethy-Filmer (Se-
quential) models [Bisswanger| 2002; Segel [1993]. The term ‘systems biology’ was coined
in 1968 by Mesarovi¢| [1968]. Both enzyme kinetics and systems biology study temporal
changes in variables of interest. In contrast to specific enzyme kinetics, systems biology
considers a network of interacting variables |Wolkenhauer and Mesarovi¢ [2005]. These
different interactions can be combined in different motifs and associated with different
dynamic effects [Tyson et al.|2003], but they critically depend on the supplied parameter
values [Adiwijaya et al.[2006].

Prokaryotes feature some of the most successful applications of systems biology in terms
of methodology and experimental reproduction. A prime example is E. coli, very likely
the best studied organism. Our knowledge of transcriptional regulation dates back to
Jacob and Monod| [1961] and their study of the lacZ operon in E. coli. This system is
so well known that it is routinely used as a reporter protein to monitor promoter or
transcription factor activity [Serebriiskii and Golemis 2000], as in the case of the general
stress response used throughout this thesis. The lacZ system remains a source of wonder
due to, for example, its ability to display bistability [Santillan and Mackey| [2008], the
effects of noise and its role in population heterogeneity [Roberts et al[2011], and the un-
anticipated degradation of S-galactosidase that I report in Chapter[j Knowledge of the
metabolism of FE. coli was central in the development of flux balance- and constraint-based
model approaches |[Reed and Palsson|2003; Varma and Palsson|/1994], culminating in the
development of the E. coli genome-scale metabolic network [Edwards and Palsson|2000]
and eventually that of B.subtilis [Oh et al.2007]. Signalling was investigated early on
in bacteria because the topologies appear simpler. A good example is chemotaxis, the
directed movement of flagellated bacteria in gradients of substrates or repellents. The
signalling for this process is based on sensors arranged as hexamers on the cell membrane,
and involves phosphorylation/dephosphorylation cycles and allosteric interactions. (Tindall
et al.| [2008] wrote a thorough review on mathematical approaches to chemotaxis, and in
Chapter [4, T survey the applications of these approaches to B. subtilis. The structural
complexity of chemotaxis is similar to that of the stressosome. Both contain hexameric
structures, and allosteric interactions are likely to play important roles in both, as I
discuss in Chapters [4 and [4f The signalling in chemotaxis is based on two-component
systems (TCS). TCS are long been known as bacterial signalling mechanisms connecting
the environment to gene expression [Mitrophanov and Groisman 2008|. A good amount of

knowledge about dynamic properties of the TCS was generated by mathematical analysis
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[Alves and Savageau|2003; [Igoshin et al. [2008} Kierzek et al. 2010; Mitrophanov et al.
2010]. In this thesis, I focus on the lesser known partner-switching mechanism for gene

expression control.

1.5. Aims and outline

A sizeable number of bacteria organise the stress response using oB [de Been
et al.|[2011; Hecker et al.|[2007; |Pane-Farre et al. 2005]. Among them are human
pathogens such as Listeria monocytogenes, in which the expression of virulence genes is re-
ported to be controlled by o® [Shin et al.|2010; [Stavru et al.|2011]. A better understanding
of 0B will also shed light on the activation of sporulation because 1) a central mechanism of
sporulation (SpolIA) functions via a oB-like partner switching mechanism |[Kalman et al.
1990], and 2) the activation of ¢® inhibits sporulation [Reder et al.|2011]. It is clinically im-
portant to control sporulation, as the virulence of many pathogens, e.g. Bacillus anthracis,

is spore-associated.

Two limitations challenge the full understanding of the ¢® network: 1) the sensitivity
of reactions of the stressosome with respect to the structure, and 2) the almost com-
plete reliance on lacZ reporter fusions. Relationships between structure and reaction
dynamics are hard to elucidate using biochemical, molecular, or microbial experimental
techniques; therefore, knowledge is also limited. Systems biology is a suitable way to
complement deficiencies in experimental approaches because it enables us to formulate
hypotheses about interactions and to predict their measurable differences. The reliance
on the -galactosidase reporter system is understandable, given its experimental ease. If
the reporter system used is itself regulated by the transcription factor under study, then
care must be taken in the analysis of results. The results presented in this thesis are listed

in detail below.

e Chapter [3 entitled ‘Models for B. subtilis’, offers a survey of mathematical mod-
els dealing with environmental signalling, in order to enable the integration of my
research into the field. The overview illustrates the routine use of B. subtilis for
modelling, but also indicates the low coverage of the o® module and the absence of
models for the stressosome. This work is adapted from the publication |[Liebal et al.
[2010].

e Chapter[3 entitled ‘Stressosome simulation I: Monomer interactions’, focuses on the
impact of the stressosome structure on the initial activation of the general stress
response. No reliable information is available about the interactions of monomers in

the stressosome. I modelled different hypotheses concerning monomer interactions
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computationally, and one of these hypotheses reproduces a large number of published

experiments. This work is being published as |Liebal et al.| [2013].

e Chapter [{ entitled ‘Stressosome simulation II: Shape transitions’, introduces the
hypothesis that molecular movements within the structure play key roles in the
activation of the signalling events. Different model types (geometric-paper, particle-
dynamics, and cellular-automaton) highlight preferred domain-movements and their

effects on the activation dynamics of the stressosome.

° C’hapter@ entitled ‘oB-induced proteome reorganisation’, presents a successful model-
experiment-cycle. Three models, based on ordinary differential equations, are com-
pared regarding their consistency with the experimental observations. The conclu-
sions of the simulations were confirmed by subsequent experiments. This work has
been published in [Liebal et al.| [2012], and reproduced by permission of the Royal
Society of Chemistry.

e Chapter[6, entitled ‘Final remarks’, briefly summarizes my results and places them
in the context of research into the general stress response, and discusses their con-

tribution in our understanding of signalling and environmental responses.

Figures and Matlab files are included in a separate CD, and available for download in the

Resource section of www.sbi.uni-rostock.de, named ‘Liebal_thesis-data.zip’
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Chapter

Mathematical models for Bacillus subtilis

In this chapter, I summarise recent results and trends in the modelling
of environmental signalling systems in B. subtilis. My objective is to show how
mathematical modelling was used to provide a better understanding of cellular responses.
B. subtilis is a well characterized prokaryote and serves as a model organism for Gram-
positive bacteria. Substantial information has been gained from studies with B. subtilis
regarding the organisation of bacterial life cycles. The knowledge gained in these studies
enabled attempts of mathematical modelling of cellular processes. I have summarized this
progress recently and this chapter is modified from this publication [Liebal et al.2010].
Particularly during the last decade, there has been increased interest in systems biology,
a discipline at the interface of experimental approaches, mathematical modelling, and
computer simulations [Wolkenhauer et al.|2003]. However, Bacilli have been investigated
in theoretical biology for a long time. In the 1970s, Sargent compared different models
for the control of cell length [Sargent|/1975], which have since then been further refined
(e.g. |Grover et al.| [2004]; Koch [1992]). Espinosa et al. [1977] examined the acquisition
of competence in cultures, while Jeong et al.| [1990] presented a mathematical model for

growth processes including sporulation and central metabolism.

2.1. Regulation of chemotaxis

The chemotactic behaviour of various organisms has been studied inten-
sively and |Tindall et al.| [2008] gave a thorough overview of the mathematical
approaches to simulate chemotaxis. Chemotaxis was first studied in F. coli, and the
proteins involved in this process are conserved in B. subtilis, too [Garrity and Ordal 1995].
However, the mechanisms of chemotaxis are fundamentally different between the two or-
ganisms |Bischoff and Ordal||[1991; Rao and Ordal |2009]. Figure outlines a simplified

mechanism of chemotactic signalling in B. subtilis. Signalling is based on methylation and
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phosphorylation reactions and includes the proteins CheR, CheB, CheA, and CheY. Lig-
and binding to the receptor, the methyl-accepting chemotaxis protein (MCP), stimulates
methylation of MCP by CheR. This reaction is antagonised by CheB. Methylation leads
to the activation of CheA which in turn phosphorylates CheY (CheY-P). CheY-P binds
to the flagellar motor protein F1iM and reverses the spin of the flagellum from a clockwise
to a counter-clockwise rotation [Garrity and Ordal 1995]. The switching of the flagellar
rotation is associated with a transition from an erratic tumbling, to the directed movement
along the concentration gradient of the extracellular ligand. FE. coli, by contrast, performs
tumbling for the counter-clockwise flagellar rotation, but smooth runs during clockwise
rotation |Garrity and Ordal [1995]. The main phosphatase of CheY-P is FliY, which is
located at the base of the flagellum. A competing phosphatase is the CheC subunit of the
CheCD heterodimer [Kristich and Ordal 2002]. The CheD subunit in the dimer deami-
nates a glutamine residue of MCP and thereby increases CheA-MCP affinity [Kristich and
Ordal/2002|. An interesting property from the modelling perspective is the adaptivity of
the chemotactic response, by which the tumbling frequency will resume its pre-stimulus

activity when the ligand level stays constant.

Rao et al.| [2004] presented a mathematical model that includes the signalling mecha-
nisms of the sensor based CheY phosphorylation and the motor-based CheY-P dephos-
phorylation. The authors assumed a mechanism by which CheY-P enhances the transition
of an active to an inactive receptor conformation to explain adaptivity in B. subtilis. |[Rao
et al. [2004] used published data on che BCDR quadruple mutants to evaluate the model.
These mutants display a characteristic but unexpected oscillation of the rotational pheno-
type. [Rao et al. [2004] argue that the oscillation might be caused by a positive feedback
between the stimulation of CheA phophorylation by CheV and a negative feedback by
the inhibition of CheA by CheY-P. Furthermore, the authors explain the population het-
erogeneity with the sensitivity of the system to CheV. Variations in the concentration of
CheV by just a factor of two can already lead to oscillations. Rao et al.| [2004] concluded
that the B. subtilis system is more robust than the E. coli system, since CheY-P steady-
state levels and the adaptation time have a higher resilience to concentration changes of
CheB and CheR. Although the regulation of the chemotactic systems of B. subtilis and
E. coli differ, the motility of both organisms is similar in effectiveness over five orders of

magnitude of stimulus concentration [Rao et al.|2004].

Interestingly, the chemotactic receptors are located at the poles, while the flagella are
evenly distributed on the cell surface. The signalling molecule CheY-P has to bridge the
distance from the poles to the flagellum motor [Szurmant et al.|2003|. Although the switch-
ing decision at a given time is stochastic, the frequency of switching is a crucial parameter

in controlling motility and is ultrasensitive to the concentration of CheY-P |[Rao et al.
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2005). Potential spatial gradients of CheY-P concentration could interfere with chemotaxis
because motors receive conflicting signals. Rao et al.| [2005] compared protein localisation
in B. subtilis and E. coli using reaction-diffusion equations. The E. coli phosphatase of
CheY-P is located at the chemosensing receptor, while the B. subtilis phosphatases are
located at the receptor (CheC) as well as the flagellum motor (FLiY) [Szurmant et al.
2003]. The model showed that E. coli establishes a homogeneous CheY-P concentration
throughout the cell, because kinase and phosphatase are located close to each other. By
contrast, the model predicted a linear decrease of B. subtilis CheY-P concentration with
increasing distance to the receptor. Moreover, simulations for B. subtilis indicated the
presence of circular concentration gradients at each motor base. The authors speculated
that the phosphatase network of B. subtilis optimises signal processing of both membrane-
ous and soluble receptors, similar to what has been shown for aerotaxis [Hou et al.|2000;
Rao et al.[2005].

2.2. The Spo0-phosphorelay phenotype hub

The Spo0 phosphorelay is the molecular basis for various phenotypic adap-
tation reactions such as competence, motility, biofilm formation, and canni-
balism or the return to vegetative growth [Fawcett et al.[[2000; Fujita et al.
2005; Lopez et al.[|2008]. The five histidine kinases, KinA, -B, -C, -D, -E, are the
sensor proteins that activate the Spo0 phosphorelay. Various signals, such as nutritional
stress, cell density, Krebs cycle (TCC), DNA damage, and presence of extracellular ma-
trix in biofilms [Aguilar et al.2010; Claverys and Havarstein 2007 trigger the transfer
of a phosphate group from the kinases to the SpoOF protein [Errington|2003; Piggot and
Hilbert||2004; Sonenshein|2000]. The phosphate group on SpoOF is then relayed to Spo0B
and SpoOA. Phosphorylated Spo0A (Spo0OA-P) is the response regulator that directly or
indirectly controls the expression of over 500 genes [Fawcett et al. 2000]. The SpoOA-
P regulated genes can be classified according to the affinity of their promoter region to
SpoOA-P [Fujita et al. 2005]. Promoters with high affinity are activated at early stages of
phosphorelay activation, among them genes associated with competence, cannibalism and
biofilm formation, while promoters with low affinity are only activated, once sufficiently
high levels of Spo0A-P accumulate, among them sporulation genes like the spollA operon
[Fujita et al.|2005].

Various groups attempted to model the processes outlined above because of the well-
characterized protein interaction network and the large body of mostly qualitative ex-
perimental data. Due to the complexity of the phosphorelay network, a prediction of its
behaviour is difficult without the help of computational analysis. While |[Jabbari et al.
[2010] focused on the effects of population size, nutrient availability, and DNA integrity to
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Figure 2.1.: Reaction diagram for the main signalling cascades in B. subtilis. The figure
shows the signal transduction that leads to switching of flagella rotation after binding
of a ligand (Lig) (green) |[Rao and Ordal 2009], regulation of competence development
(yellow) [Hamoen et al. [2003], the switch of the response regulator DegU to DegU-P
(dark blue) [Murray et al.|2009], activation of ¢B-mediated general stress response (grey)
[Hecker et al.|[2007], phosphorylation of SpoOA via the Spo0 phosphorelay (dark red)
[Piggot and Hilbert][2004] and the reactions in the SpolIA network towards commitment
to sporulation (pink) [Errington|2003]. The upper part shows only interactions in the
cytoplasm while the lower part indicates the genomic interconnections of the transcrip-
tion factors (derived from DBTBS at http://dbtbs.hgc.jp). The environmental signals
that lead to the activation of KinA-E, DegS and RsbU-P are mostly unknown.
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the phosphorelay activity, de Jong et al.|[2003] investigated the protein dynamics follow-
ing Spo0A-P regulation during activation. Morohashi et al.|[2007] performed a stability
analysis of a simplified phosphorelay model that was extended by Bischofs et al.| [2009] to
include different environmental signals and phosphatase activities. Within a given pop-
ulation the output of the phosphorelay is highly heterogeneous, enabling the population
to follow several distinct phenotypes, a finding of investigations by |de Jong et al. [2010]
and |Chastanet et al. [2010]. Schultz et al.| [2009] also took competence into considera-
tion, which is connected to the phosphorelay reactions [Lopez and Kolter|2009]. As an
alternative to the phosphorelay dynamics for their studies on extracytoplasmic protease
dynamics, Veening et al.| [2008b] used the SpoOA regulated AbrB repressor as the input

signal.

The work by Jabbari et al. [2010] concentrated on modelling the environmental and
cellular conditions that accumulate SpoOA-P and thereby allow activation of sporulation.
Their model consists of several modules, which are the regulations of KinAB activity, the
phosphorelay, the expression of SinlR proteins, and the activity of RapA by PhrA. En-
vironmental factors stimulate KinA /B and increase the phosphorylation of SpoOA by the
phosphorelay [Sonenshein 2000]. SpoOA-P inhibits the transcription factor abrB, result-
ing in 1) an elevated expression of o', and a subsequent increase in SpoOF and Spo0OA
concentrations, 2) higher concentrations of KinB, 3) lower levels of AbrB with the subse-
quent reduction in the concentration of the transcription factor Hpr and increased SinIR
expression, and 4) a reduced level of Hpr and subsequent de-repression of opp-genes thus
increasing the role of quorum sensing by Phr proteins. The environmental signals and

cellular states that Jabbari et al. [2010] investigated are:
e population density sensed via PhrA,
e cellular nutrient and energy availability sensed via CodY-GTP,
e competence decision sensed via the level of ComA,
e condition of the DNA sensed via Sda.

The authors transformed these four cellular states into yes/no decisions and assigned a
priori whether sporulation is desirable or not. While reproducing biological knowledge at
large, the simulations contradicted with the expected response for a cell with a combi-
nation of conditions of a large population (high PhrA level), no nutrients available (no
CodY-GTP), no competence (no ComA), and damaged DNA (high Sda level). The model
predicted a delayed sporulation in the presence of damaged DNA. This delay is caused in
the model by the PhrA sporulation signal that neighbouring cells emitted. The increas-

ing PhrA signal and the nutrient limitation grew stronger in the model than inhibition
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of KinA by Sda, eventually activating sporulation. Thus, PhrA does not only act as a
quorum-sensing molecule [Bischofs et al. 2009], but also as a timer for sporulation. |Jab-
bari et al. [2010] conclude that phrA and rapA transcription activation by ComA serves
to heighten the sensitivity of the phosphorelay for the input signals. Presumably, this in-
crease in phosphorelay sensitivity may cause the heterogeneity in the phosphorelay output
[Chastanet et al.[2010; de Jong et al.2010].

Jabbari et al|[2010] tested their sporulation model for the efficiency of various environ-
mental factors to stimulate sporulation. By contrast, de Jong et al.|[2003] tested their
model with the experimental data obtained from a dozen sporulation mutants. This al-
lowed the validation of the current understanding of the internal structure of the initial
sporulation network. Furthermore, the model of |de Jong et al. [2003] is based on a different
modelling framework as it uses discrete time and protein concentration steps that allows
predictions about relative steady-state concentrations. The differences in simulation be-
tween |de Jong et al.| [2003] and [Jabbari et al.| [2010] make the two models incomparable.
One outcome of the simulations by lde Jong et al.| [2003] is that phosphorelay activation
may result in two steady-state solutions independently of the SpoOA-P levels because of
a competition of activating KinA and inhibiting SpoOE activity in the sporulation net-
work. The system is extremely sensitive with respect to environmental variation and noise
in gene transcription, providing an explanation for the observed phenotypic variations in
experiments. These findings were further corroborated by Morohashi et al. [2007] with
a stability analysis of a simple model of the phosphorelay. This model only considers
phosphorylation of SpoOA-P by the phosphorelay and its dephosphorylation by SpoOE.
They conclude that the feedback of SpoOE influences the distribution of sporulating to

nonsporulating cells.

A more detailed model of the phosphorelay mechanism is examined by [Bischofs et al.
[2009]. The authors focused particularly on the integration of quorum-sensing related
starvation signals involving Rap and Phr proteins. They examined the steady-state levels
of Spo0A-P in response to varying ratios of kinase activity (the environmental signal) to
phosphatase activity by the Raps (the population signal). Four different phenotypes are
possible: 1) Spo0A-P is not affected by changes in kinase and phosphatase activity; SpoOA-
P is either sensitive to changes in 2) kinase-, or 3) phosphatase activity; 4) SpoOA-P is
sensitive to changes of both kinase and phosphatase activity. Only mechanisms underlying
the fourth phenotype can properly integrate the different signals termed by the authors
‘signal integration regime’. Interestingly, SpoOB, the second phosphotransferase of the
phosphorelay, is devoid of feedback regulations by SpoOA-P. |Bischofs et al. [2009] showed
that if a positive feedback from SpoOA-P to SpoOB would be present, the cell would not

be able to properly integrate nutrient level and population density and it would thus be
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unable to measure the ‘food per cell’.

Most models discussed in this review focused on supposedly separate and simplified
functional modules of signal transduction. However, we can only understand B. subtilis
in greater detail if we gain more insight in the interplay and cross-talk of the different
environmental response strategies. A step towards dealing with this challenge is made by
Schultz et al|[2009]. [Schultz et al. [2009] investigate interactions between the processes
of sporulation, competence and quorum sensing and find that small noise levels in the
input are amplified into different phenotypes in an otherwise isogenic population. The
examined signals are environmental and community related. They are transmitted by
Phrs and Raps and the key for variability is the concentration of Spo0A-P. The authors
related the mutual inhibition of SpoOA-P by AbrB and SpoOE to the ‘repressilator’, a
synthetic genetic regulatory network with an oscillation phenotype designed by |[Elowitz
and Leibler| [2000]. It leaves us with the intriguing question of whether the early phase of
sporulation should be composed of a regulatory network that could generate oscillations

and how those detrimental oscillations could be suppressed.

Variability in the SpoOA-P output is an overarching conclusion of most of the articles
investigating the phosphorelay and discussed here. lJabbari et al. [2010] as well as|Schultz
et al.|[2009] observed that Phr and Rap proteins sensitize the output to the input. de Jong
et al. [2003] and [Morohashi et al.| [2007] detected the competition between SpoOE and
KinA as a source for variability and bistability. Further information comes from studies
by |de Jong et al.|[2010] and |Chastanet et al. [2010] who examined the heterogeneity in gene
expression after activation of SpoOA. Because of the experimental classification of cells in
sporulators and non-sporulators as well as the positive and negative feedback regulations
with respect to phosphorylation and dephosphorylation of SpoOA it was tempting to view
the phosphorelay as a bistable switch. Bistability is a property that describes the switching
of the system between an activated and de-activated state [Millat et al.[[2008]. Under such
a regime, the system can be sensitive to a signal, leading to a switch-like transition into a
new steady state. Once it is activated, the system can resist deactivation, see Figure
Bistability is particularly interesting for biological systems as it provides the cell a way for
fast yes/no decisions as well as enabling a heterogeneous population with only some cells

being activated [Veening et al.|2008c].

Bistability is implicated with several of the B.subtilis signalling networks, including
competence (ComK) [Maamar and Dubnau 2005], production of exoproteases (DegU)
[Veening et al.|2008b] or biofilm formation (SinR) [Chai et al.|2007]. However, the data
by de Jong et al. [2010] and |Chastanet et al. [2010] show that there is no bistability in
Spo0A-P, instead Spo0A-P induced expression is highly heterogeneous. Neither is o, pro-
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Figure 2.2.: Hysteretic signal-response curve that can give rise to bistability. In the study
of [goshin et al.| [2006], the authors tested dynamical properties of the availability of o¥
(response) as a function of the dephosphorylation rate of AAP (signal). For particular
parameter region of the dephosphorylation, the system becomes bistable. Under such
conditions, the inactive state can easily switch to the active state characterized by a
high o availability, at latest at a signal strength S, (AAP dephosphorylation rate
threshold). However, the active state is robust against deactivation (decrease in AAP
dephosphorylation), since the signal strength S.g is reached at lower value compared
with S,,. In the transition zone, the response is highly sensitive to changes in the
signal, with a sufficient perturbation the system can switch easily from the inactive to
the active state.

viding the positive feedback via KinA, necessary for establishing a heterogeneous Spo0OA-P
signal. To reproduce a sufficient accumulation in Spo0A-P using a computational model
Chastanet et al.| [2010] had to increase the concentration of all SpoO-phophorelay proteins.
This modelling outcome is surprising since Spo0B concentration remains constant during
stationary phase |[de Jong et al.[2010] and since the modelling of Bischotfs et al.| [2009]
showed that Spo0A-P driven spo0B expression violates the signal integration of nutrients
and community density. Sporulation is an all-or-nothing process and surely has to be
controlled with switch-like dynamics. However, the phosphorelay is not the sporulation

switch but prepares the cell for a variety of phenotypic responses |[Lopez et al.[2008].

2.3. Signalling mechanisms in sporulation

One of the most conspicuous phenotypes of B. subtilis is sporulation. The final
commitment to this developmental process is established by o dependent gene expression
[Dworkin and Losick|2005]. Spo0OA-P mediated expression of sigF' is crucial for establishing
compartment-specific gene expression during sporulation. Two studies thoroughly investi-
gated the regulation of ¢¥ activity using ordinary differential equation models. One study
focused on molecular processes that lead to asymmetrical differentiation [Iber||2006] while
the other primarily aimed to uncover the principles of irreversibility of the ¥ activation

[Tgoshin et al.[2006]. A simplified graphical description of the regulation of o% activity is
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shown in Figure Its activity is negatively regulated by the formation of a heterodimer
with SpolIAB (AB), upon which the binding of the sigma factor to its target DNA is pre-
vented. SpolIAA (AA) is able to competitively bind to AB and release ¢". However, in
non-sporulating conditions AA is predominantly phosphorylated by the kinase activity of
AB. Thus, the steady-state ratio of phosphorylated to non-phosphorylated AA determines
the level of free o¥. This level is additionally regulated by the rate of dephosphorylation
via the phosphatase SpollE (IIE).

Iber| [2006] modelled in detail the different states which exist for AB: i) its basic form of
a homodimer, ii) bound with o%, and iii) bound with one or two molecules of AA (phos-
phorylated or non-phosphorylated). Each of these configurations harbours combinations
of ATP and ADP in the nucleotide binding pockets of the dimer. Finally, the number of
states doubles since a central aspect of the model is the allosteric functionality of AB. In
any configuration AB is either in a relaxed or in a tense conformation that affects its enzy-
matic activity [Iber|2006]. Ultimately, the authors determined 50 states connected by 150
reactions and 25 rate constants. The model was successful in approximating qualitative re-
sults of a number of published experiments. A quantitative demand of the model regarding
the reaction rate constant of IIE phosphatase was that it is 75 to 150 times lower compared
with in vitro rates. In order to resolve this paradox, ITE activity was measured by the
authors in an assay with supposedly more in vivo like conditions (switching from man-
ganese to magnesium dominated solutions) and indeed the phosphatase activity matched
the model predictions. Iber| [2006] modelled the higher activity of o in the forespore by
assuming that the IIE phosphatase associates with FtsZ homogeneously over the septum.
The forespore volume is about four times smaller than that of the mother cell, thus the
concentration of phosphatase facing the forespore is four times larger compared to the
mother cell [Iber/|2006]. This concentration difference leads to an effective increase in the
ratio of IIE to the substrate AA in the forespore and is the primary developmental trigger.
The model did not include alternative triggers for the activation of o¥ like effectors with
a compartment specific expression due to the genetic asymmetry [Feucht et al.|2002] and
thus cannot judge these effects. The allostery of the AB kinase activity further amplifies
the different AA-P dephosphorylation dynamics in the two compartments. Furthermore,
the result implies that the allosteric system is optimised to reduce the need of ATP [Iber
2006].

A similar study is published by [Igoshin et al.| [2006], who examined the same regulation
system with more or less the same intermediate complexes. However, instead of the
allosteric nature of AB their model focused on the so-called ‘dead-end complex’ of AA-
P/AB-ADP. The dead-end complex serves to buffer the concentration of AB such that
AB is unable to titrate o¥. [Igoshin et al. [2006] constructed a model with 27 states, 55
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reactions and 12 independent parameters. Analyses of the steady-state concentrations of
o under various conditions revealed that for certain physiologically feasible circumstances
the system shows a hysteretic response, i.e. activation of the system is more easily achieved
than deactivation. The hysteretic behaviour necessitates a higher concentration of AA over
AB (considering monomers) in the model, a situation that could arguably take place in the
forespore since AB is much more unstable than AA [Dworkin|2003]. Igoshin et al.| [2006]
suggest that the dead-end complex of AA-P/AB-ADP is effectively causing increased o
activity in the forespore and that the stability of the complex serves to conserve ATP. A
saving of ATP was also implicated by Iber|[2006] with respect to the allosteric forms of AB.
However, how the submicromolar concentrations of the AB/AA complex may contribute
to the conservation of ATP present in millimolar concentrations is not discussed. Whereas
the two studies by [Iber| [2006] and [Igoshin et al. [2006] both explain the compartment
specific developments during sporulation, they assume different mechanisms: [Iber| [2006]
focuses on AB allostery while Igoshin et al.|[2006] focus on the AB-AA dead-end complex.

2.4. The consequences of excitability in competence

Besides sporulation, the development of competence is one of the best stud-
ied phenotypic adaptations of B. subtilis and is a widely used example for
stochasticity in survival strategies |[Leisner et al.|2008; Raj and van Oudenaar-
den 2008]. During late exponential growth when nutrient availability decreases and the
population density increases, about 10% of the individuals in a B. subtilis population be-
come competent [Hamoen et al.||2003|. Competence development is governed by ComK,
a transcriptional factor that regulates the expression of more than 100 genes including
those required for DNA binding and uptake [Berka et al.|2002; [Hamoen et al.|2002; |Ogura
et al.|2002]. As shown in Figure comK expression is controlled by a positive feedback
loop, since ComK binds to its own promoter, and by a negative feedback loop via ComsS.
ComS protects ComK from degradation by the MecA/ClpC/CIlpP proteolytic complex.
Nevertheless, ComK inhibits expression of comS [Maamar and Dubnau|2005; |Siel et al.
2006]. Development of competence is tightly connected with the activation of the phos-
phorelay |[Lépez et al.[2008]. The expression of comK is inhibited by AbrB and thus comK
expression can only be effectively activated if the concentration level of AbrB is sufficiently
reduced by inhibition via Spo0A-P [Hamoen et al.|2003|. However, further increase in the
concentration of Spo0A-P induce rok, an inhibitor of comK expression, and thus again
development of competence is blocked [Hamoen et al.[2003]. Development of competence
is additionally regulated via pheromones and quorum sensing [Lopez et al.[2008]. The
pheromone ComX activates autophosphorylation of ComP which activates the transcrip-

tion factor ComA by transfer of the phosphate group [Hamoen et al.[2003]. A second
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pheromone PhrC (also: competence stimulating factor, CSF) promotes competence by
inhibition of RapC, the ComA-P phosphatase [Lépez and Kolter|[2009]. ComA-P induces
the expression of com.S, thus stabilizing ComK, and also induces expression of phrA-rapA
[Lopez et al. 2008]. ComA-P as an input to the phosphorelay was examined by |Jabbari
et al. [2010] while [Schultz et al.| [2009] simulated the dynamic sequential activation of

competence and sporulation respectively.

The competence system is an example for excitability: a small perturbation induces a
significant developmental response which however is only transient and the cell eventually
returns to vegetative growth |[Lindner et al.2004; Stel et al.[2007]. Positive autoregulation
of ComK was found to be the most important factor for the transition to competence
[Maamar and Dubnau/[2005} [Smits et al. 2005]. [Stel et al. [2006] developed a model to
investigate the importance of ComS for switching to competence. They added a noise term
to the equation of ComS generation and simulated the concentrations of ComK and ComS.
Their model predicted that if ComK positively affects the transcription of comsS then the
competence state becomes much more stable without affecting the probability to enter
this stress pathway. Experiments with mutants, in which ComS is positively regulated by
ComK, revealed that 4.2% of the mutant cells entered competence, similar to wild type
cells with a percentage of 3.6%. In accordance to the simulations, 88% of the mutant cells
were locked in the competent state compared to 39% of wild type cells. Next, Stel et al.
[2007] have examined the factors controlling entry to competence and the duration of that
state. They found that the higher the comK expression rate, the higher the probability
to enter competence. These findings apply until an oscillation-like regime with successive
enter and exit cycles is reached. ComS in turn determines the duration of competence
that finally leads to a bimodal distribution of competent cells. Additionally, they showed
that after sensitisation of the cell by environmental signals, it is noise that stimulates
activation of competence. They used an ftsW mutant which develops long filamentous
cells that are connected via a common cytoplasm. In this mutant noise is reduced due to
the averaging affect implied by diffusion while the physiological mean concentrations are
not affected. Indeed it turned out that the probability to develop competence becomes

lower with decreasing noise.

Maamar et al. [2007] employed a stochastic simulation approach, using the Gillespie
algorithm [Gillespie|[1977], to address the question whether the noise is of transcriptional
or translational origin. They performed experiments in which transcription is improved
and translation of comK is reduced, resulting in conditions with relatively constant ComK
levels. The analysis revealed that fewer cells became competent in the engineered strains,
showing that increased levels of transcription result in less competence. The authors

argue that the initiation of competence is determined by noise, and that the source of
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the noise can be attributed to irregularities in transcription. An interesting condition of
competence is that the phenotype can only be developed within a certain time window in
culture conditions [Leisner et al.[2007; Maamar et al.|2007|. This idea requires that the
system is robust most of the time and becomes sensitive and excitable to gene expression

noise only for specific conditions.

Leisner et al|[2009] examined the system from a different perspective by addressing
the question under which condition bistability arises. They excluded the negative feed-
back loop of comS transcriptional regulation by ComK and used ComS as an external
parameter that represents quorum sensing signals. Their results imply that during expo-
nential growth, when ComsS levels are low and ComK degradation is high, the system is
monostable which indicates that variation in the protein concentrations are not sufficient
to activate competence. Only if ComK levels increase due to the reduced degradation the
system can enter the transition state leading to bistability as result of gene expression

noise |Leisner et al.2009].

2.5. Production of extracytoplasmic proteases

One of the alternative responses following Spo0OA activation is the increase
in expression of the extracellular protease AprE (subtilisin) and Bpr (bacil-
lopeptidase) [Lopez and Kolter|2009; Lépez et al. |2008; Murray et al./2009].
Initiation of sporulation can be delayed by the production of extracellular proteases, which
break down proteins in the environment to supply the cells with additional nutrients. The
pivotal regulator is DegU. In its phosphorylated form as DegU-P the expression of exo-
proteases, among them AprE, is stimulated while competence is suppressed [Murray et al.
2009]. DegS-P phosphorylates DegU, and activation of DegS via autophosphorylation
is regulated by as yet unknown environmental signals. The kinase activity of DegS-P
is further stimulated by DegQ [Kobayashi| 2007]. DegQ is itself connected to ComA-P
and thus activated at high cell densities via ComX [Murray et al. 2009]. In Veening
et al.|[2008b], the authors conduct several experiments and used mathematical modelling
to detect the original signals and the mechanisms that regulate the dynamics of AprE
expression. Transcription of the proteases is additionally inhibited by AbrB. This inhi-
bition is compensated upon phosphorylation of SpoOA at early stages in the preparation
of sporulation [Veening et al.|2008b]. [Veening et al. [2008b] built a mechanistic model
of the DegSU two-component system which calculates protease expression based on ex-
perimentally measured sporulation-related AbrB levels. Deterministic analysis uncoveres
bistability of DegU depending on the ratio of phosphorylated /non-phosphorylated pro-
tein. The model predicts an increase in AprE levels until 20 hours of growth. Indeed, this

prediction was subsequently verified by the authors in microculture experiments [Veening

22



2.6. Operon organisation of stress responses

et al.|2008b].

2.6. Operon organisation of stress responses

Operon organization can improve the performance of stress response strate-
gies. This was examined by [Iber| [2006] for the spollA network and by [Voigt et al.[[2005]
for the phosphorelay with respect to the Sinl/R dynamics. The implications of the co-
regulation hypothesis of the operon theory by |Jacob and Monod| [1961] were tested by
Iber| [2006] based on her model of the dynamics of the spollA network during sporulation.
The central question addressed with the existing and validated model was how sporulation
efficiency is affected if noise in protein expression is either coupled or uncoupled among
the proteins of the spoIIA operon (compare Figure . This coupling can, to a certain
degree, be justified by the assumption that ribosomes can continue protein synthesis on
one mRNA to a following protein coding region without dissociation and re-association
rounds. These conditions are met for the mRNA of spollAA and spollAB, which have an
overlap of four bases. Simulations of sporulation efficiency showed that the detrimental
effects of expression noise are more pronounced if protein expression is uncoupled. An
operon organisation therefore reduces noise by means of co-expression [Iber|2006; [Tabor
et al.|2008]. This implies that operon organisation would be disadvantageous for regulation

of competence, in which noise plays a purposeful role [Stel et al.|2006].

Voigt et al.| [2005] published a conceptually related study by investigating possible dy-
namics regarding the co-regulation of sinl and sinR with a special focus on evolutionary
implications. As described earlier and shown in Figure 2.1} SinR is a sporulation inhibitor
and controls biofilm formation, and Sinl is the antagonist that deactivates SinR [Bai et al.
1993]. A o*-dependent internal promoter upstream of sinR (P3) establishes an excess of
SinR over Sinl during vegetative growth. In the model SinR represses activation of the
promoter upstream of sinl (P1/2) that transcribes the whole operon (sinl+sinR). These
mutual negative feedback relations can generate a variety of dynamics in Sinl, ranging
from a graded response to bistability, oscillation, and pulse response. The dynamics are
most sensitive to the production rate of SinR and indeed a sequence comparison of sev-
eral Bacillus genera shows a pronounced conservation of the P3 promoter region. The
sporulation probability is determined by the efficiency of the P1 promoter as well as the
Sinl-R. protein-protein interaction. Since different Bacilli are adapted to distinct environ-
ments it seems likely that their tendency to enter sporulation evolve differently. Sequence
comparison reflects this drift since the P1 promoter is very diverse and Sinl accumulated
mutations that could potentially affect the dimerisation rate of Sinl and SinR while still
allowing for dimerization [Voigt et al. [2005]. However, new experimental findings chal-

lenge two model assumptions, namely that SinR inhibits sinl [Chu et al.|[2005] and the
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spo0A promoter [Kearns et al.|2004]. These inhibitions are necessary for the development
of bistability, thus, either the SinIR network is not intrinsically bistable or there are as of
yet unknown negative feedbacks. Nonetheless, the article by [Voigt et al.| [2005] expands
our understanding of sigma-factor anti-sigma-factor interactions and depicts the potential
to understand evolutionary tendencies that take place over years based on the dynamic

events of protein concentrations occuring within minutes at most.

2.7. Partner switching mechanism and general stress response

The partner switching mechanism, including proteins on the spolIA operon,
is based on exclusive mutual interactions of an anti-sigma factor with both a
sigma factor and an anti-anti-sigma factor [Hecker and Volker|[2001; Hecker
et al. 2007; |[Price| 2002]. In addition to the irreversible initiation of sporulation, the
principle of partner switching mechanism observed for oF is also seen in other adaptation
responses. One of them is the general stress response, which is mediated by ¢® and
activated by a whole collection of environmental challenges including the transition from
exponential to stationary phase [Hecker et al|2007; Price 2002]. Although both share
a similar regulation scheme, they display critical mechanistic differences which reflect
the different physiological needs [Price/2002]. The anti-anti-sigma factor RsbV (V) is
homologous to SpollTAA and the anti-sigma factor RsbW (W) is related to SpollAB.
Comparable to the spollA interaction network the phosphorylation status of V regulates
the available pool of free o®. However, while there is only one phosphatase of SpolIAA,
namely SpollE, two phosphatases dephosphorylate V-P (phosphorylated RsbV) in a stress
dependent manner [Hecker et al.2007]. RsbU (U) reacts largely to physical stress while
RsbP reacts to nutritional stress |[Hecker et al. [2007; |Price |2002]. The main difference
in the structures of the sporulation and general stress response is the dead-end complex
of AA-P/AB-ADP, which does not exist for V-P/W-ADP because the latter complex
can quickly exchange nucleotides [Price |2002]. Since the dead-end complex is missing,
the general stress response is readily reversible. This reversibility is necessary since the
physiological task of o® is to respond to temporary cues from the environment. The
second difference is the transcriptional feedback loop since the three proteins V, W, oP
are arranged in an autoregulated operon [Price 2002]. Following o activation by energy
stress, the increased expression of o and V provides the potential for further amplification
of 0P activity. By contrast, o® driven W expression on the operon counteracts the positive

feedback loop since W deactivates ¢® by dimerisation.
Based on the analysis of the spolIA operon, Igoshin et al.|[2007] compared the differences

of oF and ¢PB. Simulations showed that this negative feedback by W results in a two

stage response, i.e. the full activity of o® is delayed whereas in the absence of W &P is
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immediately fully active. The positive transcriptional feedback increases the capacity for
regulation, i.e. it maximises the differences in free o® before and after stress activation
[[goshin et al. 2007]. While Igoshin et al. [2007] included RsbX, which is involved in
negative regulation in response to environmental challenges [Hecker et al.[2007], they did
not include the partner switch that controls the activity of the phospatase RsbU which is

responsible for environmental stress response activation of oB.

The modelling approach of Igoshin et al.| [2007] focused on the activation of o® be-
cause in contrast to experimental findings simulated long term o® activities are too high.
A representative study to elucidate the o® network uses a culture of B. subtilis with (-
galactosidase as the reporter for 0P activity. The stress is measured either by the transition
of the culture from exponential to stationary phase, caused by starvation, or by the addi-
tion of ethanol during exponential phase (reference is any publication between 1995 and
2010 by the major o® groups headed by e.g. Vélker, Price or Haldenwang). The timescale
of sampling is typical until P response reaches pre-stimulus level. By contrast, Locke
et al.| [2011] examined the expression of oB-dependent yellow fluorescent protein (YFP) in
single cells using time-lapse microscopy. Surprisingly, even stress-free cells with abundant
resources activated ¢® with the same intensity although lower frequency than stressed
cells [Locke et al.[2011]. These stochastic bursts of o activation strikingly resemble the
activation of competence and were discussed before in the context of a study by [Stiel et al.
[2007]. In both cases the question arises whether the pulses are either ‘truly’ stochastic,
meaning there is a stochastic availability of B, or originating from a perturbed limit cycle
oscillator, i.e. the pulsing is a system inherent property with randomised appearance. Just
like in the competence study Locke et al.| [2011] used an ftsW mutant and found reduced
oB activation burst. Therefore, a random release of o causes the pulse like behaviour,

just like in competence.

Whereas the network organisation of o® response and competence is completely dif-
ferent, the functional outcome is highly similar. In competence the transcription factor
ComK induces its own expression, just like the positive feedback of o, though ¢P has an
additional positive feedback by expression of the anti-anti-sigma factor RsbV (repression
of a repressor). On the other hand there is a negative feedback by which ComK inhibits

ComS$, and this results in increased proteolysis of ComK. The negative feedback in oP

is the expression of the anti-sigma factor RsbW. Amplification of noise is realised in o®
by ultrasensitivity towards phosphatase levels (RsbP, RsbU) [Locke et al. 2011], whereas
competence initiation is highly sensitive to the expression of ComK [Stel et al.|2007]. Like

B is excitable. Small perturbations can trigger large excursions of the phase

competence, o
space, beginning with a positive feedback that is overwhelmed eventually by a negative

feedback, and finally the system reverts back to prestimulus. Competence is costly and
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the time spent in this state must be reduced. General stress response is regarded as a
preparation for future stresses [Hecker et al.[2007; Price 2002], a short o® activity burst

might be sufficient to produce enough protective proteins for a given time.

2.8. Conclusions

The complexity of signalling in B. subtilis has motivated numerous studies
that used mathematical modelling to elucidate principles and mechanisms of
the cellular response to changing environmental conditions. Despite the apparent
gap between the complexity of cell signalling networks and the simplicity of their models,
many positive examples exist in which mathematical modelling has offered additional
insights and in which the models provided guidance for the design of experiments. For
example, analysis of the phosphorelay by Bischofs et al. [2009] convincingly shows how
the regulation is organised to optimise the information of available nutrient per cell. The
combination of model and experiments by Maamar et al. [2007] could elegantly explain that
temporal regulation of transcription controls the frequency of transition to the competent

state.

The partner switch mechanism of the ¢ mediated general stress response has, so far,
stimulated two mathematical models [[goshin et al.[2007; Locke et al.[2011]. These studies
confirmed that our current knowledge is sufficient enough for a detailed understanding of
the dynamics of the general stress response. The given network design of the ¢® partner
switching maximises the differences of inhibited o® during stress-free and activated o® dur-
ing stressed conditions, as the mathematical analysis explains [Igoshin et al.[2007]. Locke
et al|[2011] additionally showed that the combination of positive genetic feedback and
negative feedback by anti-sigma factor RsbW causes a pulse like behaviour, reminiscent of
the competence system. These two studies of the general stress response focused on the
energy stress activation of ¢P, and ignored the stressosome mediated environmental acti-
vation of the stressosome. In the following two chapters, I fill this gap by introducing two
different computational approaches of the dynamics of the stressosome. Chapter [J] then
introduces an alternative mechanism of pulse-generation via the expression of proteases

that are at work in the general stress response.
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Chapter

Stressosome simulation I: Monomer

Interactions

The stressosome signalling complex of B. subtilis is activated in response
to diverse environmental stresses, including ethanol, temperature, UV light
and osmolarity [Hecker and Volker 2001; Hecker et al.|[2007; Price 2002]. The
stressosome initiates a protein partner switching cascade that leads to the release of the
alternative transcription factor o® [Hecker and Volker|2001} |[Hecker et al.|2007; Price(2002].

The complex is the most upstream component so far characterised of the environmental

arm of the general stress response in B. subtilis [Hecker and Volker||2001; [Marles-Wright|

and Lewis [2007]. Its activation results in the upregulation of nearly 200 genes, including

proteins which provide protective adaption to environmental change [Helmann et al.|2001}
Nannapaneni et al.|2012} |Petersohn et al.[2001; [Price et al.|2001].

The stressosome has a supra-molecular structure of a truncated icosahedron |[Delumeau
et al|2006}; [Marles-Wright et al.[[2008] and consists of the presumed sensor protein, RsbR,
and the scaffold protein, RsbS [Akbar et al| 1997, 2001; [Yang et al|[1996]. The cryo

electro-microscopy (cryo-EM) of the stressosome revealed its molecular organisation with

40 copies of RsbR associated with 20 RsbS molecules (arranged in homodimers) (Figure
[Marles-Wright et al.[2008]. In the stress-free state, 20 RsbT molecules are bound by
20 molecules of RsbS [Marles-Wright et al.||2008]; RsbT dissociates from the stressosome
following activation by environmental stress [Yang et al.[1996]. Five paralogues of RsbR
are present in B. subtilis: RsbRA, -B, -C and -D (formerly RsbR, YkoB, YojH, YqhA)
[Akbar et al. [2001; Kim et al.[2004b| all of which retain the ability to form functional
stressosomes with RsbS [Delumeau et al|/2006; Kim et al|2004b; Reeves et al. [2010].
The fifth paralogue, YtvA, mediates the stress response to UV light [Avila-Perez et al

2006; |Gaidenko et al|[2006] and is also capable of forming stressosome complexes, at
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Figure 3.1.: Molecular composition of the stressosome. (A) The atomic model of the
stressosome [Marles-Wright et al.[2008] is coloured by domain; C-terminal, RsbR-STAS
domain is blue, N-terminal RsbR domain is yellow, RsbS is red, and RsbT is not shown
for clarity. (B) The stressosome as a two-dimensional network, with RsbR monomers
(blue circles) connected by blue lines to display the distribution of RsbR dimers. Sim-
ilarly, RsbS monomers (red stars) are connected by red lines to form dimers. Close
contact between neighbouring proteins is represented by thin-black lines. The numbers
indicate the scheme I used to identify individual proteins in the structure. (C) The four
different neighbourhoods will experience different protein cooperativity effects on the
phosphorylation reaction and thus different phosphorylation rates of the central pro-
tein. In the description of the neighbourhood composition, I always start by naming
the unpaired protein, these are circled in the figure.

least in vitro (Marles-Wright and Lewis, personal communication). This ability to form

complexes appears to stem from the high sequence conservation of the common C-terminal,

STAS domains possessed by these proteins [Pane-Farre et al.|2005]. By contrast, the N-

terminal domains of the paralogues are highly variable, suggesting differences in either

stress perception, or the interactions with RsbT [Delumeau et al|[2006; Reeves et al.|

2010].

3.1. Known facts of stressosome activation

The role of the stressosome is the binding and the controlled release of
RsbT in response to stress signals. Both RsbR and RsbS are necessary for the
association of RsbT in the stressosome [Chen et al.|2003; Kim et al.[2004b]. In stress-free

conditions, a significant proportion of RsbR molecules are phosphorylated, whereas RsbS

remains non-phosphorylated [Eymann et al.|2011; Kim et al.2004a]. The imposition of
stress leads to an increase in the phosphorylation levels of RsbR (Figure
2003; [Eymann et al|22011; Kim et al|2004alb], which is a requirement for the subsequent
phosphorylation of RsbS by RsbT [Chen et al.|2003], 2004; Gaidenko et al[1999]. As the
level of phosphorylated RsbS increases, the affinity of RsbT for the stressosome decreases
(Figure [Kang et al.[[1996; Kim et al.2004a], resulting in the dissociation of RsbT.
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Figure 3.2.: Schematic of the reactions of the stressosome. The reactions take place on
the icosahedral stressosome structure, except for RsbT*, which is cytoplasmic RsbT.
RsbT* initiates the general stress response by binding to RsbU and releasing o® by
the partner switching mechanism. Stim represents stimulation of the stressosome by a
stressor. I tested three models of interactions between RsbR and RsbT: no interactions;
RsbR as an activator of RsbT (A); RsbR-P as an activator of RsbT (B). The reaction
parameters correspond to those of Table Arrows represent reactions and lines with
circles denote activation.

The released RsbT activates the protein phosphatase RsbU [Kang et al.|/1996] and the
activation of the partner switching cascade which ultimately leads to the release of o
from its quiescent complex with anti-sigma factor, RsbW [Hecker and Volker|2001; Hecker
et al.|[2007; Price2002]. Once released, o® directs RNA polymerase to the promoters of
genes of the general stress regulon to stimulate their expression [Yang et al.[1996]. To reset
this switch, the phosphorylation statuses of both RsbS and RsbR must be returned to pre-
stress levels to allow RsbT to re-associate with the stressosome. The dephosphorylation of
RsbS and/or RsbR appears to be catalysed by the phosphatase, RsbX [Volker et al.|[1997;
Yang et al.||1996]. The properties of the stimuli that activate the general stress response
can be summarised in two categories, 1) environmental stress, and 2) energy stress [Boylan
et al.|[1993; |[Volker et al.||1995b], both of which activate a phosphatase for RsbV-P [Volker
et al.|1997; Yang et al.[|1996]. The environmental stress (ethanol, UV light) is transmitted
via the stressosome and the activation of phosphatase RsbU whereas energy stress (glucose
limitation) leads to the stressosme-independent activation of phosphatase RsbP [Vijay
et al|2000]. However, there is insufficient knowledge of the phosphorylation dynamics
of the stressosome because of the limitations of the experimental methods applied thus
far. For instance, it is not known how the perception of an environmental signal causes
the increase in RsbR and RsbS phosphorylation levels. Functional explanations for the
existence and the mechanisms of the four RsbR paralogues are also missing; the paralogues

have broad and overlapping sensitivities regarding stress stimuli [Reeves et al.[2010].
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3. Stressosome simulation I: Monomer interactions

Microbiological, molecular, and biochemical techniques have provided general knowl-
edge of protein interactions and chemical reactions of the stressosome, but they are in-
sufficient to understand the molecular events taking place in the complex. Here, I use
computational modelling of the cryo-EM stressosome structure to test three hypotheses
about protein interactions within it, to gain insight on the spatial events associated with
RsbR phosphorylation and their regulatory capacities, published in Liebal et al.| [2013]. I
compared three models: 1) ‘no cooperativity’, where the phosphorylation reactions in the
stressosome are independent of neighbouring proteins; 2) ‘substrate activation’, in which
non-phosphorylated protein neighbours stimulate phosphorylation; and 3) ‘product acti-
vation’, where phosphorylation is increased by the presence of phosphorylated neighbours.
I evaluated the simulation results by comparing them with published data and found the
‘product activation’ model provided the best fit to the experimental data. A comparison
of the simulation results with the signal-response data of [Marles-Wright et al.| [2008] re-
vealed identical sigmoidal stressosome activation patterns for salt and ethanol treatment;
indicating that the activation dynamics of the stressosome are independent of any specific

stressor.

3.2. A geometric model of the stressosome

The experimental information used to construct the models, including a
description of the geometric properties that may affect allosteric behaviour, is
summarised by the following. The basic units of the stressosome are twenty dimers
of RsbR and ten dimers of RsbS. Each protein interacts with a homodimer partner, but
the icosahedral structure requires two additional interaction partners for each protein.
The stressosome structure is constructed in such a way that while RsbR homodimers can
interact with each other, RsbS homodimers never directly interact with each other. These
rules, along with the observed stoichiometry of the complex, yield a single, unique assembly
(Figure[3.1A)). The truncated icosahedron of the stressosome core can be visualized as a
two-dimensional network, as in Figure [3.1(B). Each protein is in the centre of a triangle
whose corners are defined by its neighbouring proteins (Figure [3.1[C)). Because the edges
in a geometric icosahedron are all equidistant, I adopted the simplifying assumption that
all positions in the neighbourhood have the same interaction strength with the central
protein. The identification of single proteins is based on a numbering scheme of the
elements in the icosahedral network representation, starting from ‘1’ in the lower left and
finishing with ‘60’ at the top-right (Figure [3.1B)). A second list associated each protein
with its interaction partners, e.g. protein ‘1’ (RsbR) is neighboured by (‘5°, ‘2, ‘6’), (RsbS,
RsbR, RsbR; listing starts with the solitary protein type, the circled protein neighbour
in Figure [3.1(C)). If a protein is phosphorylated then a ‘1’ is assigned to it, otherwise its
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3.2. A geometric model of the stressosome

Table 3.1.: Allosteric parameters, p,, for the different models. The first column repre-
sents the neighbourhood composition (compare to Figure [3.2(C)) and columns two to
six represent different phosphorylation states of the models and their allosteric parame-
ter. The table labelled ‘General’ contains the model independent allosteric parameters,
whereas the three tables below show the parameters for ‘No cooperation’, ‘Substrate
activation’, and ‘Product activation’.

Triangle | 000 | 010 | 011 | 100 | 110 | 111 |
General

R3 0.7 1 0.7 | 0.7 | ={010} | ={011} | 0.7
S1 0 0 1 0 0 0
No cooperation

R1 1 1 1 1 1 1
R2 1 1 1 1 1 1
Substrate activation

R1 0.7 107 |0 0.5 0.5 0
R2 1 0.7 105 |0 0 0
Product activation

R1 0 1 0 1 1 0
R2 0 1 1 0 0 0

state is ‘0’.

There is no experimental evidence about the effect of the stressosome phosphorylation
status on the dephosphorylation rate and consequently I assumed that the dephospho-
rylation rates are constant and are not affected by the state of neighbouring proteins.
Therefore, the transition from state ‘1’ to ‘0’ (equivalent to RsbR-P/RsbS-P dephospho-
rylation) in the model takes place with a predefined probability identical for each of the
three models and which is independent of any neighbours. By contrast, I modelled the
transition from state ‘0’ to ‘1’ (RsbR/RsbS phosphorylation by RsbT) to be dependent
upon the phosphorylation status of neighbouring proteins (Table , consistent with
the biochemical data [Chen et al.[2003]. The phosphorylation probability is determined
based on a pre-defined maximum phosphorylation probability, kphr. The value is cho-
sen to best reproduce the phosphorylation magnitude and time-scale for experimentally
measured data on the stress response (Table [Eymann et al.2011; Kim et al.[2004a].

In the stressosome, four different neighbourhood configurations (triangles) exist, which
are summarised in Figure [3.1](C). Of the four combinations, three place RsbR in the
centre, and one places RsbS in the middle. Each neighbourhood has a different number
of RsbT molecules associated with it and thus the activation of RsbT by RsbR and RsbS

within these regions is presumed to differ. To account for this triangle-specific activation,
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3. Stressosome simulation I: Monomer interactions

I have introduced the ‘allosteric parameter’, p,, which represents the ability of a triangle
to stimulate RsbT to maximum activity. The allosteric parameter can take any value
between 0 and 1, and is multiplied by the maximum phosphorylation probability. In
addition, the phosphorylation state of the three neighbours affects RsbT activity in each
triangle. By permutation, there are thus 22 possible phosphorylation states for the four
triangles: three triangles have six phosphorylation states (see R1, R2, and S1 in Table
and one triangle has four phosphorylation states (see R3 in Table . The resulting 22
free allosteric parameters represent a challenge for reasonable quantification, but by using

biological insight it is possible to reduce their number.

An increase in RsbS phosphorylation has been measured as a function of increased
levels of RsbR phosphorylation [Chen et al. [2003} [2004]. Therefore, the kinase activity
for the triangle with RsbS in its centre (S1) is at maximum if all RsbR neighbours are
phosphorylated. Moreover, neighbouring RsbS molecules must be non-phosphorylated
because otherwise the kinase dissociates. Hence, only S1 with neighbourhood (0, 1, 1) has

an allosteric parameter of 1, all other five states are inactive (p, = 0).

RsbR with three RsbR neighbours (R3) lacks a nearby RsbT kinase, because in the
structure of the stressosome RsbT is always immediately adjacent to RsbS [Marles-Wright
et al.[2008]. A value for the allosteric parameter of 0.7 for all models allowed the optimal
reproduction of the data of Kim et al|[2004a] and of [Marles-Wright et al.| [2008]. The
phosphorylation of RsbR in R3 is independent of the status of the neighbours because
it is isolated from direct phosphorylation by RsbT due to its neighbourhood composi-
tion, and the influence of its neighbours on its phosphorylation is therefore minimal. Two
triangle combinations with a central RsbR remain: R1 with arrangement (RsbR, RsbS,
RsbS) and R2, arranged (RsbS, RsbR, RsbR) (Figure [3.1[C)). The neighbourhood R2
has six different phosphorylation combinations: either none, one, or both of the RsbR
molecules in the triangle are phosphorylated. These three states can occur in combination
with phosphorylated and non-phosphorylated RsbS. The central RsbR cannot be phos-
phorylated if the neighbouring RsbS is already phosphorylated, because the cognate RsbT
would have dissociated. Similarly, R1 has six phosphorylation combinations and the next
section shows how I use the phosphorylation combinations to model different hypotheses

of protein interactions in the stressosome.

I developed three computational models to test their capacity to reproduce experimental
data, and they differ in the way that RsbR activates the RsbT. The possible circumstances
are that RsbR 1) activates, 2) inhibits, or 3) has no effect on RsbT. Instead of assum-
ing an inhibition of RsbT by RsbR, I investigate the activation of RsbR by RsbR-P, the

two processes being indistinguishable within the modelling setup. The interactions of
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3.2. A geometric model of the stressosome

RsbR and RsbT are reflected in different allosteric parameter values for phosphorylation
in the triangles R1 and R2. In the no cooperation model, I assumed that RsbT activation
is independent of its neighbours, which corresponds in the presented framework to set-
ting to 1 (constant maximum kinase activity) all the allosteric parameters in the triangle
configurations (Table . In the substrate activation model, non-phosphorylated RsbR
stimulated RsbT and the allosteric parameter values increased from 0 to 1 with a decrease
in the phosphorylation of RsbR. By contrast, the allosteric parameter increased from 0
to 1 along with an increase in the number of phosphorylated RsbR neighbours for the
product activation model. The specific values for the allosteric parameters were optimized

empirically for the best reproduction of experimental data (Table .

The stressosome reactions were split into regular steps for the following rationale. Con-
sider the two time periods, the time between two reactions of a given protein, referred
to as the ‘waiting-time’, and the time during which all proteins in the stressosome react
once, referred to as the ‘process-time’. If the process-time is smaller than the waiting-
time, then a step-wise update rule is appropriate to approximate stressosome dynamics
because the system appears step-wise regarding waiting times. Long waiting-times are
a central assumption of the stochastic simulation algorithm used to simulate stochastic
systems with low copy numbers comparable to the 60 proteins of a stressosome [Gillespie
1977]. Second, a longer waiting-time than process-time for the stressosome is valid because
after phosphorylation, the kinase has to exchange ADP for ATP in its active site and the

phosphatase has to diffuse to the stressosome complex to catalyse its dephosphorylation.

In the simulation the initial phosphorylation state of RsbR and RsbS was randomly
assigned with a probability of 50% for each to allow rapid equilibration of the system.
The equilibrium was independent of the exact initial state which affects the relaxation
time only. During a simulation step, the occurence of a phosphorylation reaction was
determined for all 60 proteins in random order. For instance, the triangle R2 has neigh-
bours (RsbS, RsbR, RsbR) with a phosphorylation status (0, 1, 1) and the central RsbR is
non-phosphorylated. From Table it follows that the allosteric parameter for the ‘no-
cooperation’ model is p, = 1, for ‘substrate activation’ p, = 0.5, and ‘product activation’
pe = 1. To calculate the reaction probability, the allosteric parameter was multiplied by the
maximum phosphorylation probability, kphr, which is 0.1 for stress-free and 1 for stress-
ful conditions. Whether a reaction actually occurs was determined using a Monte-Carlo
approach: the reaction probability was compared with a number drawn from a uniform
distribution in the interval [0,1]. Only if the phosphorylation probability was smaller than
the random number was phosphorylation deemed to have occurred. Dephosphorylation
was determined similarly using the dephosphorylation parameter. Simulations were re-

peated 50 times while assuring that statistical properties did not change significantly. The
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3. Stressosome simulation I: Monomer interactions

Table 3.2.: Parameter values for the probabilities of reactions in the stressosome. The
parameter kphr, the phosphorylation probability, has two values, the first for stress-free,
the second for stress-response conditions. To consider the effects of neighbours, kphr is
multiplied by the allosteric parameters of Table

Parameter | Meaning ‘ Value ‘
kphr Phosphorylation of RsbR 0.1/1
kdpr Dephosphorylation of RsbR-P | 0.06
kphs Phosphorylation of RsbS 0.4
kdps Dephosphorylation of RsbS-P | 1

model was implemented in Matlab® (7.11.0) and is included in the attached CD in folder
‘3rd-Chapter_monomer-interactions’, and available for download in the Resource section

of www.sbi.uni-rostock.de, named ‘Liebal_thesis-data.zip’.

3.3. Normalisation of signal-response data

The experimental data by Marles-Wright et al.| [2008] and the simulation
results differ in their input and read-out variables and therefore, for compar-
ison, they were normalised. The experimental data followed a sigmoidal shape and I

used a hyperbolic tangent to characterise it,

f(z) = ;(tanh<b(x - c)) + 1). (3.1)

In this formula, a represents the maximum response, the S-galactosidase activity in the
experiments (a = 85 Miller units for ethanol stress, and a = 60 Miller units for NaCl stress)
and RsbS phosphorylation in the simulation (a = 0.2 for product activation). Parameter b
encodes the sigmoidality, i.e. how fast the system switches between on and off (b = 8-107!
and b = 6-1072 for ethanol/NaCl and b = 12 for product activation). Parameter ¢ encodes
the inflection point; in the experiments this is the concentration of stressor producing half
maximal §-galactosidase activity (¢ = 3% for ethanol, and ¢ = 488 mM for NaCl), in the
simulation this is the RsbR phosphorylation probability resulting in half maximal RsbS
level (¢ = 0.14 for product activation). The response (-galactosidase and RsbS fractional
phosphorylation) were divided by their associated estimated a-parameter in the hyperbolic
tangent formula. For the experiment both signals, i.e. NaCl and ethanol concentrations,
were divided by their respective ¢ parameter. For the simulation the signal parameter,
kphr (equivalent to RsbR phosphorylation), was divided by its associated ¢ parameter.
Thus, all data in the response range from zero to approximately one, and the response of

0.5, correlates to a signal strength of 1.
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3.4. Experimental reproduction of stressosome simulations
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Figure 3.3.: Fractional phosphorylation of RsbR and RsbS during stress. Comparison of
mean and variance of RsbR (triangles) and RsbS (squares) phosphorylation level during
NaCl or ethanol induction of stress response. The experimental data were extracted
from [Kim et al.|[2004a]. The three different models for simulation are: the product
activation model (red line), the substrate activation model (green line), and the no
cooperativity model (blue line). Stress is simulated assuming an increase in the phos-
phatase probability of RsbR, kphr, to 1. In the simulation stress is stopped at 5 min by
reversion of kphr to the according stress-free value of 0.1.

3.4. Experimental reproduction of stressosome simulations

I compared the simulation results with the experimental data from Kim
et al.| [2004a] (similar results were obtained by Eymann et al.| [2011]). Kim
et al. [2004a] measured the fractional phosphorylation of stressosome components RsbR
and RsbS during exposure to NaCl and ethanol. The parameter settings used for fitting
the observations are given in Table|3.2| and observations (markers) and simulations (lines)
are shown in Figure Activation of the stressosome is simulated with an increase in
RsbR phosphorylation probability, kphr, from 0.1 to 1. In the experiment, the fractional
phosphorylation of RsbR decreased after 5 min, while levels for RsbS decreased after only
1min. To simulate this apparent stress adaptation, I reset kphr from 1 to 0.1 after 5 min

and therefore the stress is only active in the simulation between 0 and 5 min.

In the Kim et al. [2004a] study, the fractional phosphorylation of RsbR pre-stress is
around 0.7, and is thus similar to the simulation results of 0.6. The peak phosphorylation
levels are also comparable, although shifted to later times for RsbS in the simulation.
In the experiments of Kim et al.| [2004a], the RsbS fractional phosphorylation level in-
creased rapidly following stress induction, whereas in the model RsbS phosphorylation

increased only after the phosphorylation of RsbR. The RsbR fractional phosphorylation
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3. Stressosome simulation I: Monomer interactions

decayed faster in the simulation in comparison to the experiment, but both experiment

and simulation arrived at comparable values of 0.6 towards their respective conclusions.

I did not attempt to model the long-term regulation of stressosome activation because
that requires the additional consideration of gene expression. Therefore, while the ranges
of RsbS and RsbR phosphorylation are captured, the dynamics of the RsbS deactivation
process are not reproducible in the presented framework. A notable difference between the
models was the faster activation of RsbR and RsbS in the ‘No-cooperation’ model in Figure
This faster response is caused by an increase in the phosphorylation probability for all
RsbR, molecules, because, unlike in the other models, the phosphorylation probability is
not restricted to neighbouring molecules. All three models perform comparably in relation
to the activation profiles in Kim et al. [2004a], indicating that another parameter must

determine the biological significance of one model over the others.

To determine the crucial parameter that separates the three models, and to under-
stand the phosphorylation dynamics of the structure of the stressosome, stress activation
was modelled as a function of the increase in RsbR phosphorylation probability. Marles-
Wright et al.|[2008] measured o® dependent 3-galactosidase activity in response to different
concentrations of the stressors NaCl and ethanol. A sigmoidal signal-response curve for
both these environmental stressors was observed [Marles-Wright et al.|2008]. The sig-
moidal signal-response was not observed during the stressosome-independent activation
of 0B by energy stress, suggesting strongly that the sigmoidal environmental stress re-
sponse is stressosome-specific. I evaluated the simulation using these data because the
direct outcome of the simulation is the RsbS fractional phosphorylation, which correlates
directly to the release of RsbT from the stressosome and to the activation of ¢®. To com-
pare experiments and simulations, the experimental data were normalised as described
in Section Strikingly, the experimental data for the stressosome response generated
for ethanol (triangles) and NaCl (squares) coincide almost perfectly after normalisation
(Figure . Consequently, the stressosome response is identical for these two different
signals. Among the three models generated, only the product-activation model resulted
in a signal-response curve with a comparable sigmoidal character (pro-act curve in Figure
, where the deviations from the experimental data are probably rooted in the model

simplifications.

I also evaluated the product activation model using experimental data from [Volker et al.
[1997]. Here, the cellular concentration of the phosphatase RsbX was controlled by cloning
it downstream of an IPTG inducible promoter. The ethanol stress response was tested
by titrating the cellular levels of RsbX with IPTG. Yet again, the experimental outputs

were measured using a o dependent [-galactosidase reporter gene fusion, whereas the
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Figure 3.4.: Stimulus-response characteristics of the stressosome. The different stimuli
used in experiments by [Marles-Wright et al. [2008] are ethanol (EtOH, triangles) and
NaCl (circles). The simulations according to the three models tested are: product acti-
vation (red line), substrate activation (green line), and no cooperation (blue line). As
experiment and simulation use different stimuli (NaCl, ethanol and kphr, respectively),
and response definitions ([-galactosidase and RsbS phosphorylation) the stimuli and
responses were normalised according to Equation Ethanol and NaCl activate the
stressosome in an identical manner, leading to identical stimulus-response character-
istics. Only the product activation model approximates the experimentally observed
sigmoidal character of this response. The parameters are identical to the reproduction
of the |[Kim et al.|[2004a] data and are shown in Tables [3.1| and

simulations produced fractional phosphorylation levels of RsbS. As described above, these
two measures correlate directly because RsbS phosphorylation leads directly to oP acti-
vation. I normalised the two data sets internally with their highest unperturbed output,
i.e. wild type (-galactosidase activity and RsbS phosphorylation. Stress was applied at
20 min by the addition of ethanol in the experiment and by increasing the phosphorylation
parameter of RsbR, kphr, from 0.1 to 1 in the simulation. Since RsbX is a phosphatase,
the probability of dephosphorylation of RsbS (kdps) and RsbR (kdpr) need to be adapted
in the model. In conclusion, modification of only kdps reproduced the data by [Volker
et al. [1997]: kdps = 1 (wild type, red line), kdps = 0.6 (RsbX reduced, green line), and
kdps = 0.3 (RsbX low, blue line). In the simulation, a reduction in the dephosphorylation
of RsbR failed to reproduce the experimental data, because the response after activation
remained constant at the level of the wild type response (not shown). The response in
the simulations was faster than the experimental data, because the additional time delay
caused by the expression of the reporter gene is omitted when examining directly the RsbS
phosphorylation as output. The time delay between maximum RsbS phosphorylation and

maximum reporter protein signal is about 15 to 25 min [Kim et al.||2004a], which is only
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Figure 3.5.: Effect of reduced levels of RsbX on stress activation of ¢®. Three data-sets
from |Volker et al|[1997] were digitized in which the level of RsbX is controlled by the
addition of IPTG (BSA46, [wild type|, squares, BSA3374+1mM IPTG [RsbX reduced],
diamonds; BSA337+0.1mM IPTG [RsbX low]|, triangles). The simulation was per-
formed with the product activation model. The responses of experiment and simulation
are normalised to the maximum response of the wild type. The lines represent simu-
lations with parameters as listed in Table [3.1] and [3.2] but with appropriately adapted
dephosphorylation probabilities (kdps), wt with kdps = 1 (red line); reduced RsbX with
kdps = 0.6 (green line); low RsbX with kdps = 0.1 (blue line). The activation of the
stressosome by ethanol (experiment) or by increase in kphr (simulation) both took place
at 20 min.

slightly smaller compared to the approximate 30 min delay of simulation and measure-
ments in Figure The experimental results of |[Volker et al.| [1997] are explained in the
model by assuming that the stressosome and thus the environmental stress response is
reset by the unique dephosphorylating of RsbS-P by RsbX.

By relating experimentally measured oP activities to the fractional phosphorylation of
RsbS (the model output), it is possible to compare the simulations with a number of pub-
lished experiments (see Table [3.3). First, [Akbar et al| [2001] measured stress responses
for strains with mutations in both RsbRA and RsbRB, and in either RsbRC or RsbRD or
both (see Table . The major outcome is that RsbRC and RsbRD increase the pre- and
post-stimulus S-galactosidase levels. In the experiment of Martinez et al. [2010], stress was
induced by the transition to stationary phase (energy stress), and it was thus reported by
these authors that RsbRC and RsbRD can sense energy stress. The unbiased simulations
support this notion and provide clues about the kinetic implications of these findings. The
most direct way to replicate this finding in the simulation is to increase the phosphoryla-
tion likelihood for RsbS, kphs. Thus, RsbRC and RsbRD are more efficient than RsbRA
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3.5. Consequences of the assumptions and limits of prediction

and RsbRB in inducing the RsbT kinase activity towards RsbS during energy stress stim-
ulation. The mixture of RsbRC and RsbRD, with stress-insensitive RsbRA and RsbRB,
lowers the apparent activation of RsbS (Appendix [Martinez et al.[2010]. Second, Kim!
et al.| [2004b] detected a hyperbolic (-galactosidase stress response for RsbRD instead of
the sigmoidal response seen for RsbRA and RsbRB. As shown in Figure the models
of ‘Substrate activation’ and ‘No cooperation’ produce hyperbolic responses while the sig-
moidal response generated by the ‘Product activation’ model is caused by the allosteric
behaviour of RsbR interactions (see Table[3.1). Although the data of Kim et al|[2004a] are
in form of a time course and the sigmoidal property is derived from a dose-response curve,
a time course can be controlled by the dose-response if the stressosome adapts faster to
the stimulus than the stimulus changes itself. On the basis of this assumption, the model
predicts that RsbRD is less allosteric than RsbRA. Finally, the cellular automaton enables
qualitative analysis of RsbR mutations. Amino-acid substitutions on certain positions of
RsbRA result either in elevated or reduced pre-stress output while maintaining a wild
type stress response (Table [Gaidenko et al./ 2011, 2012]. Since the stress response
is unaffected, the protein interactions of the stressosome are not involved and thus table
3.1 remains unchanged. Based on the assumption that stress stimulation increases RsbR
phosphorylation by RsbT, the substitutions either activate or inhibit RsbT without stress
stimulation if the mutations increase or decrease the pre-stimulus response, respectively.

However, the stimulation of RsbT after stress perception is undisturbed.

3.5. Consequences of the assumptions and limits of prediction

I presented the first computational model of the stressosome based on a
Boolean representation of phosphorylation. The consequences of the unique neigh-
bourhood compositions in a truncated icosahedron were simulated in a cellular automaton-
like computational environment wherein the future state of a protein is based upon the
phosphorylation status of its neighbouring proteins. I analysed simulated time course data
of RsbR and RsbS phosphorylation, as well as steady state phosphorylations at different
stress inputs and compared them to data from the literature. For simplicity, I disregarded
any effects that may originate from the interactions between dimers of RsbR and RsbS
as there are no experimental data available about such effects. Moreover, I also ignored
the potential for the RsbR paralogues to display a localisation bias within the stresso-
some (e.g. the R3 neighbourhood). This is, because, to date, there is no information
available on the localisation patterns of RsbR and its paralogues within the stressosome.
Although four RsbR paralogues contain two threonine residues as potential phosphory-
lation sites [Gaidenko et al./1999|, the model considers only single phosphorylations of
RsbR. The double phosphorylation of RsbR occurs only in response to the imposition
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3. Stressosome simulation I: Monomer interactions

Table 3.3.: Comparison of experimental observations with simulation. The phosphoryla-
tion of RsbS is correlated to the S-galactosidase response because phosphorylated RsbS
releases RsbT, the activator of oB.

Experiment ‘ Phenotype ‘ Reference ‘ Model adaptation | Simulation ‘
Reduced RsbX | increase in (- | [Volker decrease in kdps increase in
galactosidase et al.| [1997] post-stress
response RsbS-P
ARsbR(AB), alteration in pre- | |[Akbar et al. | increase in kphs increase in
ARsbR(ABC), | and post-stress - | [2001] RsbS-P
ARsbR(ABD) | galactosidase re-
sponse
ARsbR(ABC), | hyperbolic re- | [Kim et al.l | increase in back- | hyperbolic
RsbRD stres- | sponse [2004b] ground phospho- | response
sosome rylation  (Table
, decrease of
cooperativity
RsbR, RsbS | transient increase | [Kim et all | increase in kphr increase of
phosphory- in  phosphoryla- | [2004a] RsbR-P
lation after | tion
stimulus
Stimulation sigmoidal  dose- | Marles- adaptation of the | allosteric
with different | response curve Wright allosteric parame- | activation
stress level et al. [2008] | ter for R1 and R2 | of RsbT by
neighbours RsbR-P
RsbRA T86A, | elevated basal | |Gaidenko increase of pre- | increase of
N129A, [-galactosidase et al. | stress kphr pre-stress
Q142A level but wild | [2011] and RsbR-P
type stress re- | [Gaidenko
sponse et al. [2012]
RsbRA reduced basal | |Gaidenko decrease of pre- | decrease of
L141A, B-galactosidase et al.|[2012] | stress kphr pre-stress
Q147A, L149R | level but wild RsbR-P
type stress re-
sponse
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3.6. Integration of the results to current knowledge

of strong stresses and the double phosphorylation actually limits stressosome activation
[Eymann et al.[2011]. T have avoided the double phosphorylation phenomenon in order to
keep the model simple, whilst maintaining a model that is applicable for all but the most
extreme of stressful incidents. The fitting of the model to the experimental data required
a high phosphorylation status for RsbR molecules in a neighbourhood with only RsbR
neighbours (R3-neighbourhood).

Whereas the majority of bacterial sensory systems consist of monomers or dimers, some
systems, including the stressosome and chemotaxis arrays, form large complexes. Amongst
the possible reasons for this phenomenon is an increase of the regulatory space; a sensor
that interacts with its neighbours expands its input signal range. An adaptation of the
interactions can thus affect the response. In terms of cellular automata, these interactions
correspond to the update tables. What is the knowledge we can expect from such an
abstraction? A cellular automaton is first and foremost a spatial model; it reproduces
patterns like the distribution of black and white squares on a lattice. A different up-
date table yields a different pattern, fitting an observation better, or worse. The best
test of the cellular automaton of the stressosome is the direct observation of phosphory-
lation patterns. For example, the model predicts hyper-phosphorylation of RsbR in the
neighbourhood of R3. This, however, is technically impossible to measure and probably
biologically irrelevant. The purpose of the stressosome is the release of RsbT from phos-
phorylated RsbS, and thus no particular pattern but the total phosphorylation matters.
The cellular automaton of the stressosome allows the examination of different interactions
by adapting Table and the effect of external inputs, as represented by the parameters
of phosphorylation and dephosphorylation of Table In this context, predictions are
hard to formulate because the output of an altered RsbS phosphorylation can be repro-
duced by a number of patterns generated by different update tables and input parameters.
Consequently, I evaluated the model on existing data that enables association of model

parameters with biological functions.

3.6. Integration of the results to current knowledge

The phosphorylation of RsbR is a requirement for the activation of the stres-
sosome, because inhibition of the threonine residue targeted for phosphoryla-
tion in RsbRA (T171A) blocks stress response [Kim et al.|2004b]. Furthermore,
the phosphorylated form of RsbR was found to stimulate the kinase activity of RsbT
[Chen et al|2003|. The simulations in this chapter reproduce these findings. Only the
model of RsbT stimulation by RsbR-P simultaneously fitted the two experiments of 1)
RsbR and RsbS phosphorylation frequencies, and 2) stress signal-transcriptional response

data. This RsbR phosphorylation requirement also explains why RsbR is phosphorylated
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to high levels in stress-free conditions [Eymann et al.[2011; [Kim et al.|2004a].

Environmental stresses lead to an increase in RsbT kinase activity against RsbR and
RsbS, either by direct interactions of RsbT with RsbR paralogues, or through some, as
yet, undetermined secondary interactions |Gaidenko et al.[1999]. Reanalysis of the data
presented in [Marles-Wright et al. [2008] shows that the levels of the activation of RsbT
in response to stress is independent of the nature of the stress (Figure . How is
this achieved? The N-terminal domains of RsbR, presumed sensors (in part because this
domain of YtvA is blue light sensitive), may interact with a secondary messenger molecule,
or with a protein that integrates the initial stress signal. A candidate for this possibility
is Obg, a ribosome-interacting protein with unclear roles in sporulation and P activation
[Kuo| 2007]. Ethanol and NaCl have similar physiological effects by inducing secondary
oxidative stress (reactive oxygen species) in the electron transport chain [Mols and Abee
2011], potentially linking these stressors with the stressosome. Whether RsbT activation
requires the involvement of a small molecule, or a protein integrator, are aspects of the

stress response that remain to be determined experimentally.

In wvitro, RsbX can dephosphorylate RsbS-P and RsbR-P, but the latter only at residue
T205 [Chen et al.|2004]. The dephosphorylation reactions have also been studied in vivo
[Eymann et al.|2011], and the two approaches provide broadly consistent results. The inef-
ficient dephosphorylation of RsbR T171-P by RsbX probably explains the slow decrease in
RsbR phosphorylation observed by Kim et al.| [2004a] (summarised in Figure[3.3)), whereas
RsbS was dephosphorylated rapidly. In the simulations, the dephosphorylation probability
for RsbR is nearly two orders of magnitude lower than that for the dephosphorylation of
RsbS-P (0.06 and 1, respectively, see Table . The stress response of strains expressing
different levels of RsbX following a challenge with 4% ethanol has been tested [Volker
et al.[[1997] and such a challenge should lead to only a single phosphorylation in RsbhRA
at residue T171 [Eymann et al.|2011]. Indeed, the data of |[Volker et al. [1997] could be
reproduced in the model by assuming that RsbX was active as a phosphatase only towards
RsbS-P. A functional stressosome also requires a balanced phosphorylation status of RsbR.
Experiments and simulation do not support the prior assumption that RsbX mediated the
dephosphorylation of RsbR-P, though it is still formally possible at a low, but significant

level.

3.7. Conclusions

In reproducing numerous published experiments, the stressosome simula-
tions add weight to a model in which RsbT is activated allosterically by phos-
phorylated RsbR. The simulation results also suggest that RsbX is only required to
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dephosphorylate RsbS to reset the stressosome to a pre-stress state. Furthermore, the
normalization of the data of |[Marles-Wright et al. [2008] shows that stressosome activation
and thus phosphorylation dynamics are identical for different stressors. This model ap-
proach forms the foundation for future computational experiments to explore the effects of
phenomena for which the mechanism of their action is currently unknown. These experi-
ments could explore the impact of RsbR T205 phosphorylation on stressosome activation,
the impact on localisation constraints of RsbR paralogues in the stressosome, or the neg-
ative feedback exerted on the system via o mediated control of RsbX expression. The
model I introduced in the passing chapter provides a proof of the utility of using Boolean
network simulations to model stressosome activation, as demonstrated by the modelling
of the activation dynamics of the stressosome for moderate stresses. For a complex and
fascinating molecule like the stressosome, many questions remain to be answered despite
two decades of intensive research on the regulation of o2. The limitations of biological
experimentations in this system can be overcome by computational modelling, which is
proving to be a valuable tool to shed light on the function of not only this system [[goshin
et al.|2007; |Liebal et al.|2012; |Locke et al.|2011|, but other signalling networks too [Liebal
et al.2010]. Consequently, the application of Boolean network simulations is likely to
provide insight to other, highly symmetric molecules that are poorly understood, for in-
stance, the co-ordinated assembly and disassembly of bacteriophage, viruses, and bacterial
micro-compartments and the communication of enzymatic active centres in pyruvate dehy-
drogenase complex [Milne et al.|2002] and the dynamic effects of pore opening and closing

on iron uptake in ferritins [Liu et al.2003; |Weeratunga et al.|2010].

In the passing chapter, I modeled the stressosome based on the view of protein monomers
with identical interactions among all their nearest neighbours. However, these identical
interactions are only a simplification, although apparently efficient, because the stresso-
some is composed of dimers of RsbR and RsbS. This simplification is appropriate because
the nature of the interaction of proteins and the transmission of information among the
proteins of the stressosome is still a matter of debate. In the following chapter, I abandon
the simplification of identical interactions and assume that dimers form the basic units of
the stressosome. It is also a contribution to the debate of information transfer among the
proteins because a geometric model examined in the next chapter makes strict predictions

about structural motions within the stressosme for the purpose of information transfer.
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Chapter

Stressosome simulation II: Shape

transitions

The stressosome has been introduced in the previous chapters as an envi-
ronmental sensor responsible for the activation of the general stress response.
The stimulation of the stressosome induces structural and functional modifications that
cause the release of the protein kinase, RsbT, and converts the original signal into a con-
centration of free RsbT. Since the regulation of the stressosome has already been covered
in the previous chapter, in this chapter, I focus on the stressosome’s structural properties.
In B. subtilis, RsbT activates a ‘partner switching’ signalling cascade that involves RsbV,
RsbW and the alternative sigma factor o, and ultimately leads to the induction of the
general stress response [Hecker and Volker|2001; Hecker et al.| 2007, [Price [2002]. Marles-
Wright et al.| [2008] used cryo electro-microscopy (cryo-EM) to determine the atomic struc-
ture of the stressosome, which adopts a truncated icosahedral geometry and is composed
of 20 dimers of RsbR and 10 dimers of RsbS. A simplified illustration of the stressosome
is visualised in Figure together with a trimer of dimers of RsbR and RsbS and their
domains, that jointly form a triangle. RsbS belongs to the STAS-domain superfamily,
with other STAS members in B. subtilis including RsbR, RsbV and SpolIAA [Aravind
and Koonin| 2000; Mittenhuber| 2002; Pane-Farre et al. [2005]. The multiple RsbR par-
alogues of B. subtilis possess a conserved C-terminal STAS domain [Murray et al. 2005],
but they differ in their N-terminal, globin-like domains [Akbar et al|2001; Pane-Farre
et al.|2005]. The STAS domain of RsbR paralogues and RsbS are jointly responsible for
the construction of the icosahedron [Marles-Wright et al.[|2008]. The variable N-terminal
domain is proposed to act as a sensor, or enables interactions with RsbT |[Delumeau et al.
2006; Reeves et al.2010]. One of the RsbR paralogues, YtvA, carries a UV light sensi-
tive, N-terminal LOV domain (light-oxygen-voltage) instead of a globin-like fold |Akbar
et al.||2001; Losi et al.[2002]. UV light induces the formation of a covalent bond between
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Stressosome

A 5ONOTS A Rsbs-STAS
- RsbR-N-term. RebT o Ser59 no phosphorylation
YtvA-LOV

¢ Ser59 phosphorylated
Linker (Ja) 4 RsbX

Figure 4.1.: Interaction and domain structure of stressosome proteins and their organi-
sation as trimer of dimers, a triangle structure. A triangle of dimers in the stressosome
contains two RsbR dimer and one RsbS dimer with an associated RsbT. The STAS
domains are structural elements, whereas the RsbR-N terminus is implicated in the
sensing of the signal. RsbX is the phosphatase for the RsbT mediated phosphorylation
of RsbS.

Cys62 and a flavin nucleotide cofactor of the YtvA LOV domain [Losi et al. 2002]. By
contrast, the molecular details of signal transduction in the other RsbR paralogues remain

unknown.

The next step in the signal processing cascade involves transmitting the signal from the
N-terminal domain to the C-terminal STAS domain of the RsbR paralogues (Figure .
Both RsbR and YtvA possess a flexible linker region between their two domains, the so-
called Ja linker [Buttani et al.[2007], which undergoes conformational changes upon signal
perception [Moglich and Moffat|2007]. The structural changes are presumably transmitted
to the STAS domain [Herrou and Crosson|[2011], and stimulate the kinase activity of RsbT
[Avila-Perez et al.|2009; Chen et al.|2003|. The ensuing increase in RsbS phosphorylation
releases RsbT, and thus activates the general stress response |[Kang et al.|[1996; |Yang
et al.[[1996]. On the other hand, the dephosphorylation of RsbS-P is performed by the
phosphatase, RsbX (Figure , thereby resetting the system to the resting state [Chen
et al.|2004; |Volker et al.|1995a].

The STAS domains are implicated in both the signal transmission and the construction

of the icosahedron. Thus, it is possible that changes in the conformation of the STAS
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domains change the global structure of the stressosome in order to facilitate the infor-
mation transfer. The stressosome is an icosahedron, and this structure alone allows us
to derive rules for the motions of the stressosome’s domains. This approach is possible
because geometric constraints remain valid over different orders of magnitude [Whitesides
and Boncheva |2002]. |Cuccia et al.| [1994] studied the structure of carbon allotropes by
using paper-folding techniques that reproduce the sp2-carbon bond properties. Combin-
ing the carbon-bond models in different ways allowed Cuccia et al.| [1994] to construct
the allotropes of carbon, like ring molecules, fullerenes, etc. Geometric models can not
only represent static protein structures, but also the processes of protein folding and
self-assembly. Burnley and Cox! [2004] constructed chains of paper to study folding pro-
cesses related to protein folding which were agitated and folded spontaneously into defined
shapes. This approach can also be applied to the assembly of viral capsids [Burnley and
Cox 2005; |Gracias et al.|2002]. (Caspar and Klug| [1962] studied properties arising from
the geometry of icosahedral viral capsids. From paper models they learned that arrange-
ments of structure units consisting of pentamers and hexamers are a geometric necessity.
The particular organisation of pentamers and hexamers maximises the contacts between
the units |Caspar and Klug||[1962]. It is a frequent approach to simplify the structure of
proteins using spherical or elliptical bodies to study geometric and thermodynamic con-
straints [Bruinsma et al.|[2003} |[Feng et al.||2008} |Zandi et al.|2004]. Similarly, I devised
a particle-dynamics simulation where the RsbR and RsbS proteins are approximated by
tetrahedral constructs. This procedure allowed us to generalise results obtained by the
geometric model. These results inspired the construction of a cellular automaton. This
cellular automaton is based on the automaton-model of Chapter[5with appropriate mod-
ifications. While the geometric models have a very limited capacity to study stressosome
dynamics, a cellular automaton enables an analysis of the effect of different parameters

on the activation profile.

Though much is known about the consequences of stressosome activation, several ques-
tions remain unanswered: 1) What is the stressor activation mode for RsbR? 2) How does
RsbR activate RsbT by phosphorylation? 3) How is the activation signal transferred from
the stressosome-integral STAS domain to the RsbS associated RsbT? 4) What are the
advantages of an icosahedral structure in this system? Here, I have combined independent
modelling approaches for the stressosome, including a geometric model, particle dynam-
ics simulation, and a cellular-automaton model to answer these questions. The resulting
model of the stressosome activation suggests a method of communication between RsbR
and RsbT, the basis of which is an orchestrated collapse of three dimers in a triangle.
This collapse is caused directly by the environmental conditions that affect the RsbR
and YtvA N-terminal domains; no intermediary signal transducers are necessary, explain-

ing why none have been found thus far. The structural interactions between RsbR and
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RsbT after the collapse stimulate RsbT. Finally, the ability of the icosahedral geometry
to support the collapse is an inherent property of this type of geometry. I expand my
original ‘Collapse Hypothesis’ by the assumption that one collapse stimulates the collapse
of nearby structures. Simulations using cellular automata lead to the conclusion that
the cooperative collapse propagation expands the regulatory power of the stressosome.
Furthermore, a single signal event of the RsbR paralogues is amplified by multiple phos-
phorylation/dephosphorylation events on RsbS, as revealed by the rigorous sequencing of

intramolecular events in the stressosome.

4.1. Construction of geometric models for the stressosome

The stressosome is a truncated icosahedron and these geometric structures
are popular origami folding models. I constructed a paper-based, geometric model of
the stressosome based on a folding sequence visualised in Figure For this construction,

90 quadratic paper units were folded and assembled as indicated by steps 1-7 in Figure

EA).

In collaboration with Peter Raasch, a particle-dynamics simulation of the stressosome
was developed to experimentally verify the observations obtained from the geometric paper
model. In the simulation, the proteins of the stressosome were represented by particles with
a three dimensional position and velocity. Interactions and connections between proteins
were modelled by two types of forces, connective and interactive, acting between those
particles. The particles are distributed in space like the vertices of an icosahedron and a
connective force acts between the particles. The force is similar to a the the force produced
by a linear spring, flexible within a certain range but stiff beyond it. The interaction force
was used to model repulsion and attraction between proteins at the tips of the structure,
which have a certain degree of freedom to move. It acts in repulsion when two proteins are
too close to one another and in attraction when the proteins are within a certain distance.
Phosphorylation of proteins resulting in either stronger or weaker attraction was modelled
per protein by changing the interaction force. External disturbance by proteins in the
cytoplasm was simulated by a short random impulse on all proteins in the structure.
The code is written with Visual Basic® and available on the attached CD in the folder

‘4th-Chapter_shape-transitions’ and subfolder ‘Particle-Dynamics’.

The stressosome is assembled from dimers of RsbR and RsbS (Figure[4.2(B)) [Chen et al.
2003]. Three dimers form a triangle at the molecular 3-fold axis, equivalent to a hexamer in
terms of monomers (Figure [4.2(B)). Overall, the structure is composed of twenty triangles
and these form the basic agents in the cellular automaton. The neighbours were organised

such that an icosahedral geometry is generated comparable to the icosahedral cellular
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4.1. Construction of geometric models for the stressosome

Figure 4.2.: Modular origami approach (A) and network diagram of the stressosome (B).
Six steps to fold a single square paper unit, sketch 7 indicates how three monomers are
connected to form a three-dimensional construction unit of which the view from above
is shown in sketch 8 (A). Icosahedral surface organization that guides the assembly
of the paper model (B). Each protein is formed by three paper monomers that form
one construction unit. Dimers in the stressosome are connected with continuous bars.
The simulation of the cellular automaton is based on trimers of dimers in the form
of triangles. Each triangle is identifiable according to the numbering scheme. RsbR
is depicted with blue circles, RsbS as green stars. Each protein is represented by one
tetrahedron of sketch 8 in (A).

automaton of |[Kiester and Sahr| [2008]. In the cellular automaton of the stressosome, three

states were deemed possible for each triangle: 1) ‘relaxed condition’, where all dimers
protrude out of the stressosome; 2) ‘collapsed condition’, where all dimers in a triangle are
physically close to each other, or 3) ‘inhibited triangle’, this is a partially collapsed triangle,
some dimers have collapsed onto a neighbouring triangle, thus an inhibited triangle cannot
be in the collapsed state. Physiologically a triangle collapse corresponds to the reception
of a stress signal by the stressosome, and a relaxation of a triangle corresponds to the
reversion to a pre-stimulus stressosome. Each triangle was numbered from the lower
left to upper right (Figure [4.2(B)) and its state was stored in a list, the ‘Position-list’.
Thus, the Position-list represents the output of the model. A second list, the ‘neighbour-
list’, associated each triangle to its three neighbouring triangles and documents their
state. This neighbour-list was essential for determining collapse probability in the collapse

cooperativity model.
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Table 4.1.: The three parameters used for simulation of the stressosome cellular-
automaton model. The numerical values are empirically chosen to establish a low
collapse frequency of the stressosome in stress-free conditions. An increase of the co-
operation of collapse to a value of 0.5 leads to a nearly 2.5-fold increase in the collapse
fraction.

Parameter | Meaning Value

Tcol Probability of collapse 1-1073

Trix Probability of relaxation | 0.25

coop Cooperation of collapse | 1-1072 (0.5 stress-induced)

In the following section, I introduce the different components and processes specific
to the simulation and give an example of how the simulation was implemented. At the
beginning of each simulation with the cellular automaton all triangles in the stressosome
were relaxed. The dynamics of the stressosome were independent of the initial stressosome
state because a simulation can, in principle, realise every possible stressosome configura-
tion in a limited number of update steps. During a simulation the stressosome adopts
many different possible configurations and each can be regarded as an initial start. Fur-
thermore, it is not possible to assign completely random initial conditions; there are more
forbidden configurations than allowed ones because each collapsed triangle must have all
neighbours inhibited. The simulations reached a steady state typically before 140 update
steps, using the parameter values in Table For optimal reproducibility the simula-
tions were repeated 50 times; more simulations did not reduce the standard deviation
further. The code is written with Matlab® and available on the attached CD in folder
‘4th-Chapter_shape-transitions’, and available for download in the Resource section of

www.sbi.uni-rostock.de, named ‘Liebal_thesis-data.zip’.

In one simulation step each triangle was evaluated once in a random order. Only relaxed
triangles (no direct triangle neighbour is collapsed) can collapse, i.e. the Position-list is 1

for the triangle. A collapse at position A took place if the following condition held:
Nrand < Teol + AF- (41)

This is a standard Monte-Carlo evaluation of chemical reactions as used for example in
the Gillespie-algorithm [Gillespie][1977]. In Equation Nyiand is a random number in
the interval [0,1], and reo is the probability parameter for the collapse (Table [£.1). The

parameter 4 F quantifies the effect of neighbours on the collapse according to the equation:

3 A
3 Af
AF = coop(1 — TCOI)Q. (4.2)
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The middle term (1 — r¢o) ensures that the sum of rq, and AF in equation (4.1) has a
maximum value of one. This term corresponds to the potential by which collapse efficiency
can be increased. The cooperation parameter coop quantifies how effective the neighbours
can use this potential and ranges from zero (neighbours cannot increase collapse, no col-
lapse cooperation) to one (neighbours can make collapse a certainty, collapse cooperation).
The results of the particle-swarm simulations implied that triangles inhibited for collapse
(triangles with collapsed neighbours) stimulated collapse reactions of their neighbours. In
equation , the parameter 4I; represents inhibited neighbours and is derived from the
neighbour-list; 47; is one if the i-th neighbour of A was inhibited, the neighbour-list is ‘3’,
and zero otherwise. Each triangle has three neighbours (Figure 4.2(B)), and an increase in
the number of inhibited neighbours increases the probability of collapse of triangle A. The
relaxation reactions are determined similar to equation , by exchanging the collapse

probability with the relaxation probability (r,) and without the neighbour effect, 4F.

The parameter coop allows the testing of different levels of cooperation for collapse as
observed during the particle-dynamics simulations. Here, cooperation describes a spatial
activation process, in which collapsed second order neighbours (the neighbours of neigh-
bours) activated the collapse of triangles. This second order neighbour interaction was
observed in the particles-dynamics simulation and is coded in the cellular-automaton for-
mulation by using collapse inhibited triangles. A collapse inhibited neighbour informs a

triangle that the neighbour of this neighbour is collapsed.

For example, the collapse of triangle no. 1 in Figure (B) is evaluated. Triangle 1
is relaxed (represented in a state table by ‘0’), therefore it is not collapsed (state table
value of ‘1), and it is also not inhibited for collapse (state table value ‘2’). First, we
examine the neighbours of triangle 1, these are the triangles 2, 5 and 6. None of these
can be collapsed, because otherwise triangle 1 would be inhibited. But if the triangles 2,
5 and 6 are inhibited themselves, then these triangles can stimulate the phosphorylation
of triangle 1. For example, triangle 2 has neighbours 1, 3 and 7, and of those triangle 3 is
collapsed. Consequently, triangle 2 is inhibited and stimulates collapse of triangle 1, via
the parameter 'J5 = 1 in equation . Similarly, triangles 5 and 6 might exert positive
effects. If a collapse of triangle 1 occurs, then the state table of triangle 1 is changed to ‘1’
and the states of triangles 2, 5 and 6 are changed to ‘2’, representing the inhibited state.
The effect of different combinations of parameter values was studied using an orthogonal
sampling method. For two parameters under investigation the sampling space in the
interval of [0,1] was divided into 15 squares. For each parameter two random numbers were
generated in each square, resulting in 450 samples. Each sample of parameter combinations
was simulated independently 50 times for statistical confidence. Every simulation was

performed for 300 update steps, to ensure the steady state was achieved. The mean fraction
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of collapsed triangles was calculated for steps 200 to 300 for each triangle position to get
statistics only for the steady state. Note that the maximum number of simultaneously

collapsed triangles is 0.4 (8/20), because collapsed triangles inhibit neighbour collapse.

4.2. Structure and motions of icosahedra

Modular origami techniques are able to reproduce the truncated icosahedron
structure of the stressosome; a paper based geometric model of the stresso-
some is illustrated in Figure (B) By comparison, the molecular structure of the
stressosome, solved by cryo-EM by Marles-Wright et al. [2008], is illustrated in Figure
H(A) In the geometric model, RsbR and RsbS proteins were represented by tetrahe-
dra, and each tetrahedron had three nearest neighbours. However, the distances between
the neighbours were unequal; each tetrahedron was closer to one neighbour than to the
other two, thus forming a tetrahedron-dimer. The tetrahedron-dimers of the geometric
model have the same distribution as the RsbR and RsbS dimers in the stressosome. A
particle-dynamics simulation was employed to assess whether the structure of the modu-
lar origami model was independent of the construction method used and ensure that the
origami model obeyed general geometric principles. Indeed, the minimum energy config-
uration of the particle-dynamics simulation was identical to that of the geometric model,
and both were similar to the cryo-EM-reconstruction of the stressosome (Figure . The
surface of the stressosome comprises trimers of dimers (two RsbR dimers and one RsbS
dimer) and pentamers formed at the intersection of these; in Figure [4.3(B) a trimer of

dimers points toward the observer, and three pentamers are adjacent to it.

The geometric model is flexible in the movements of the tetrahedral protrusions. Two
dimers can approach one another when pressed together, indeed the force needed for the
dimers to approach one another appears lower if all the dimers in a triangle are pushed
together, a process here designated as triangle collapse. The triangle collapse was visualized
for the three stressosome representations in Figure 4.3(D-F). If each dimer was a member
of two triangle structures, it could only collapse into one of these triangles. If a dimer was
collapsed into the first triangle, then the second triangle could not collapse (inhibited),
and vice versa. A physical separation of the dimers was also possible in the geometric
model when the pentamers were pushed together. This, however, required substantially
more force in comparison to a triangle collapse. Given the strong interaction between
dimers of RsbR and RsbS seen in vivo [Marles-Wright et al.|[2008; Murray et al.|2005] this

collapse is excluded on a molecular level.

In collaboration with Peter Raasch, a particle-dynamics simulation was constructed to

verify the generality of the geometric model results. In the simulation, tetrahedral struc-
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triangle

Figure 4.3.: Summary of the structural models of the stressosome. Subfigure (A) shows
the surface model of the stressosome at atomic resolution determined by
, with RsbR coloured in blue; RsbS, yellow; and RsbT, red. Subfigure
(B) shows the result of a modular origami geometric paper approach, and (C) shows a
particle dynamics simulation of a truncated icosahedron model in which the tetrahedra
are only attached by the edges of their triangular base. A-C show the stress-free,
relaxed condition, whereas D-F shows the stress-induced, collapsed state. Triangles of
dimers (hexamers) lead to a ‘triangle collapse’. Isolated dimers are dimers that are
not collapsed but for which all their neighbouring dimers collapsed, thus inhibiting the
further collapse of isolated dimers. Both the geometric model and particle dynamics
reproduce the dimer construction of the stressosome.
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tures were used to represent the proteins (Figure [4.3(C)). The connections between the
vertices were spring-like, with a restricted capacity for shrinking and elongation. In the
non-excited state, no force acted between the tips of the tetrahedra, whereas the excited
state was simulated by an increase in the attractive force between the tips. Excitation
rendered the relaxed dimer configuration meta-stable. Slight imbalances in the force dis-
tribution resulted in the triangle collapse (Figure [£.3|F)), thus reproducing the findings

of the paper-based geometric model.

4.3. Efficient stressosome activation via cooperation

Triangle collapse was the common result obtained for both the geometric
model and the particle-dynamics simulation. Furthermore, the particle-dynamics
simulation indicated that the collapse of one triangle redistributed the forces within the
icosahedron such that the collapse of neighbouring triangles became more likely. Could
the cooperation of triangle collapse be used in the regulation of stressosome activation?
To answer this question, a cellular-automaton model was developed that combined the
icosahedral structural |Liebal et al.2013] with the dynamic information of triangle col-
lapse and cooperation. Simulation results of cellular automata are inherently spatial and
a graphical representation of two different simulation results of the cellular automaton of
the stressosome is illustrated in Figure The evolving patterns of collapse are unique
for every simulation, but some general properties can be observed. Figure A) rep-
resents a typical outcome regarding the frequency of collapse. In this simulation, many
triangles collapsed with a frequency between 0.2 and 0.5, while there are a few triangles
with a high (> 0.5) and low activity (< 0.1). Figure [4.4(B) shows a simulation with ex-
actly 8 frequently and 12 rarely collapsing triangles. Only a minority of simulations follow
this pattern, because the collapse of one triangle inhibits the collapse in the neighbouring
triangles and this requires an optimal positioning of collapse to maximise collapse. The
spatial representations of the cellular automaton simulations of the stressosome are in-
cluded to exemplify direct simulation results. The patterns produced as direct outcome
of the cellular automaton are, just like those of Chapter[3 of no practical use because
they are experimentally inaccessible. Instead of examining the activity of each and every

triangle we have to focus on all triangles of the stressosome over time.

Figure shows the collapse activity over 600 update steps (corresponding to time) for
a single stressosome (A) and for an ensemble of 50 simulations (B) using the parameter
values of Table At steady state about 15% (3 of 20) of the triangles were collapsed.
However, it should be noted that a maximum of 40% (=8) of the possible triangles can
collapse simultaneously because of steric collapse inhibition. Figure (A) shows the tra-

jectory for a single simulation, and which also reveals the high noise level: the system
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Figure 4.4.: Triangle specific collapse average over time. A simulation was performed for
200 update steps with the parameters listed in Table with the high coop parameter
and the average number of collapse events was calculated for each triangle. The visu-
alization of triangles corresponds to the stressosome net of Figure [1.2B). (A) shows a
representative result with a majority of triangles activated with a frequency between
0.2 and 0.5 and a few high and low active triangles. (B) Represents a rare result for
which the triangles have assumed a particular arrangement that allows for the maximal
number of 8 simultaneous collapses. Highly collapsed triangles always have low active
neighbours, because a collapsed triangle inhibits its neighbours.

varies between no collapsed triangles and 25% (=5) of collapsed triangles. Therefore, the
standard deviation of 7% was high. After 400 update steps (dashed line), the parameter
for the cooperativity of collapse (coop) was increased from 0.1 to 0.5 according to the hy-
pothesis that stressosome activation is based on an increase of cooperation of collapse. The
fraction of collapsed triangles immediately increased to 33% (=6.6). This is concomitant
with a decrease in the standard deviation to 5%. Overall, the results show that stresso-
some activation can be regulated by an activation of the cooperation of collapse, but the
outcomes in Figure [£.5] are limited to a particular combination of parameters. To justify
the validity of our results, and to compare the response sensitivity if the stressosome is
activated either by probability of collapse or by cooperation of collapse, I analysed a wide

range of parameter values.

4.4. Parameter scan for stressosome activation

With the cellular-automaton modelling approach it is possible to study how
different collapse probabilities (r.,) and an altered cooperation of collapse
(coop) affect the fraction of collapsed triangles in the stressosome. An efficient
stress response requires a strong increase in the amount of collapsed triangles. This can

either take place by increasing the (i) collapse probability, (ii) collapse cooperation, or (iii)
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Figure 4.5.: Dynamics of triangle collapse of the cellular automaton (time). The data are
collected from a single simulation (A) and the mean (circles) and standard deviation
(dotted line) of 50 simulations (B). From simulation steps 0-400 (thick line) collapse
cooperation was low, at coop = 0.01, whereas from 400-600 was increased to coop = 0.5.
During stress-free condition on average 14% of triangles are collapsed whereas during
stress the collapsed fraction increases by nearly 2.5-fold to 33%.

by decreasing the collapse relaxation (ryy). Figure shows the change of the collapse
fraction for parameter changes in the pairs 7., — % (A) and 715 — coop (B). By evalu-
ating Figure I derived parameter combinations with a high collapse ratio between an
active/non-active stressosome. The collapse probability needed to be below 7., < 0.05
to result in a high activation ratio. By contrast, the value of the relaxation probability
had limited effect on the activation ratio (Table . Strikingly, the relaxation reaction
became more effective for the collapse cooperation mechanism (Figure [4.6[B)). In this
condition the fraction of collapsed triangles decreased with increasing relaxation proba-
bility. Moreover, the relaxation probability had a larger effect on the collapse fraction,
particularly at high 7, values. This capacity of the cooperation of collapse to enable reg-
ulation via a relaxation pathway allows for more regulatory control. The collapse is closely
related to phosphorylations of the RsbR and RsbS proteins and thus dephosphorylation is
necessary for relaxation to occur. Stressosome activation leads to the expression of RsbX,
a phosphatase, and conceivably to an increase in the relaxation. The increase of collapse

by the way of increasing cooperativity thus enables negative feedback regulation.

4.5. A new review of events during stressosome activation

The model of the stressosome activation proposed here is a variation of the
stressosome model introduced in Chapter[3. Although the previous model also con-

sidered the stressosome structure and related the future state of a protein with its closest
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Figure 4.6.: Parameter scan of collapse frequency for collapse (r), relaxation (ryx),
and cooperation (coop). (A) Probability distribution if partially collapsed triangles do
not stimulate collapse of neighbouring triangles (coop = 0). (B) The average collapse
fraction for different values of coop. If no cooperation exists then the collapse frac-
tion is independent of the relaxation reaction and increases rapidly with the collapse
probability. By contrast, if collapse becomes cooperative (increase in coop) then the
relaxation reaction becomes influential. The parameter combination of cooperation and
collapse probability shows an increase in collapse for both parameters but contains no
new information and is given in Appendix@

Table 4.2.: Comparison of two cellular-automaton models for stressosome activation.
The model of the previous chapter focuses on phosphorylation reactions on protein
monomers, whereas the model of the current chapter has explanatory power for struc-

tural events.

Property

Monomer model

Triangle model

Model basis
Simulated structure
Agent interpretation
Number of agents
Different agent states
Truth table size

Number of parameters
Simulation output

cellular automaton
trunctated icosahedron
protein monomers

60

2 (phosphorylation)

22 (4 neighbourhoods with
3-6+ 1-4 combinations)

4

fractional phosphorylation

cellular automaton
regular icosahedron
triangles (3 dimers)
20

3 (conformation)
41

3
fractional collapse

The truth table is not explicitely modelled, but can be interpreted as such
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neighbours, there are noteworthy differences (listed in Table . The model proposed
here is tailored to investigate the observed structural rearrangements of icosahedra; it has
been developed specifically with the stressosome in mind, but the model could be adapted
to suit other icosahedra that undergo conformational change, such as the disassembly of
many viruses on infecting their host’s cells. In this study I have shown that the dimers
in an icosahedron can physically approach each other, and this movement additionally
induces the approach of two neighbouring dimers, ultimately leading to a collapse of a
triangle of dimers (Figure [4.3{D-F)). The collapse of one triangle also induced the collapse
of neighbouring triangles in a particle-dynamics simulation. This process was named co-
operativity of collapse and it increases the influence of the parameter for the relaxation of
triangles (the inverse of collapse) on the collapse occurrence. Whilst it is convenient to de-
scribe the conformational changes that occur during stressosome activation as the collapse
of a triangle composed of protein dimers, this does not imply that the stressosome compo-
nents undergo drastic collapse or structural rearrangement. Rather, any conformational
change that occurs on activation in one protomer is transmitted through its neighbours
within a triangle and propagated throughout the entire structure. Whether this conforma-
tional change takes place coincident with a stressosome intramolecular symmetry axis, or
orthogonally to the axis, is irrelevant, the geometric principles surrounding neighbouring

triangle collapse remain constant.

Overall, the modelling process suggests the following sequence of events for stressosome
activation (Figure [4.7)):

1. Stressors activate the sensory domain causing a conformational change [Jurk et al.
2011; Moglich and Moffat,|2007];

2. The Ja linker transmits the signal to the STAS domain |Gaidenko et al.|2012; Moglich
and Moffat|2007; |Tang et al.[2010];

3. The Collapse Hypothesis explains the communication between RsbR and RsbS;

4. Phosphorylation of RsbR (catalysed by RsbT) [Chen et al.|2003; |Gaidenko et al.
1999|, and/or FMN-induced conformational changes in YtvA [Avila-Perez et al.
2009] stimulate phosphorylation of RsbS by RsbT;

5. Phosphorylation of RsbS triggers dissociation of RsbT |[Chen et al.|[2003];
6. RsbX dephosphorylates RsbS-P [Yang et al.|[1996],
7. RsbT re-association and phosphorylation of RsbS;

8. RsbT re-association and slow recovery of pre-stimulus conformation of the sensors
[Losi et al.[2003].
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Figure 4.7.: Process diagram for the environmental stimulation of a triangle. An ac-
tivation/deactivation process proceeds as follows: (1) signal perception; (2) conforma-
tional change transmitted to the STAS domain of RsbR/YtvA; (3) triangle collapse;
(4) stimulation RsbT kinase activity; (5) RsbT dissociation; (6) RsbX mediated RsbS
dephosphorylation; (7) RsbT re-association and stimulation; (8) RsbT re-association
and recovery of pre-stimulus state.

This general stressosome activation model embodies the Collapse Hypothesis to explain
the intermolecular communication between RsbR and RsbS. The graphical representation
of the events leading to the stressosome activation in Figure [4.7] emphasizes an impor-
tant regulatory function of the stressosome, generated by an auto-activation loop. After
dephosphorylation of RsbS-P, the activated and collapsed triangle can participate in two
reactions: 1) conformational change to re-activate the sensor and cessation of RsbT stim-
ulation; or 2) re-association of cytoplasmic RsbT to the activated triangle, including the
repeated phosphorylation of RsbS. The conformational changes associated with the reac-
tivation of the sensor are in the order of 1h for the LOV domain of YtvA
, and also the dephosphorylation of the RsbR-P paralogues is considerably slower
than RsbS-P dephosphorylation (Chapter [§ and [Chen et al|[2004]). Since reaction (7) is

faster than reaction (8), the stressosome activation cycle is more likely closed via reaction

(7), which decouples the stressosome response duration from the activation by the stimulus
duration of reaction (1) (Figure [4.7). The rate of reaction (8) controls the length of the
response and an adaptation of this reaction rate enables modification of stress response
duration, independently of the stimulus duration. This feature is not associated with the

Collapse Hypothesis, and thus is generic to the stressosome.
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4.6. Relation of the results to experimental observations

RsbR and RsbS are the minimal combination of proteins required to form
a stressosome in vitro, but as many as five paralogues of RsbR are also com-
ponent parts of the stressosome in vivo [Akbar et al.[2001]. RsbS appears to act
as a scaffold for the assembly of the stressosome, but it also plays a central role in the
recruitment and regulated dissociation of the signalling protein, RsbT [Chen et al.[2003].
Of the RsbR paralogues involved in the environmental signalling pathway, the stimulus,
UV light, is known only for one of the paralogues, YtvA [Avila-Perez et al.|2006; Gaidenko
et al. 20006; Losi et al.|[2002]. Moreover, the structure of YtvA before and after light re-
ception has been determined. The LOV domain of YtvA appears to perform a scissor-like
rearrangement following stimulation, with a distinct movement of the Ja helix linking the
signalling and STAS domains [Moglich and Moffat|2007]. Solution studies of full length
YtvA suggest that its overall shape is maintained in response to stimulus, but that re-
arrangements within the YtvA dimer, and particularly within the stressosome-anchored
C-terminal STAS domain, may change the way YtvA interacts with its partners in the
stressosome [Jurk et al.2011]. To involve the stressosome-anchored STAS domain in the
signalling pathway requires information transduction from the N-terminal LOV sensor.
The two domains are connected by a flexible linker, called the (Ja) helix. Whereas Jurk
et al. [2011] did not find that the Ja is involved in intramolecular interactions, Moglich
and Moffat| [2007] did detect molecular motions of Ja between dark and light state. The
importance of the Jo linker has also been confirmed for RsbR |Gaidenko et al.|[2012]; sub-
stitution of conserved residues increased stressosome activation, whereas substitution of
non-conserved residues reduced it. These results fit the Collapse Hypothesis by allowing

the linker to modulate the probability of a collapse of dimers, and subsequently triangles.

The observations of the geometric model, and the results of the particle-dynamics simu-
lation, suggest a global structural reorganisation of the icosahedral structure of the stres-
sosome. [van Vlijmen and Karplus [2001] used normal mode analysis to study the motions
of an icosahedron composed of 60 dialanine peptides in silico. The peptides can per-
form several motions, but the most prominent is ‘breathing’, a process during which the
peptides depart from each other. The capsids of icosahedral viruses are well studied: a pH-
dependent global shape transition has been observed for the cowpea chlorotic mottle virus
(CCMV) [Bancroft et al.|[1967; |Speir et al.|1995]. Tama and Brooks III} [2002] described a
mechanism for the swelling of the CCMV particles using normal mode analysis. Strikingly,
the motions of hexamers during swelling-induced expansion are more prominent compared
to those of pentamers, and furthermore, dimers in the capsid stay close to one another.
Hexamer expansion is the inverse of the triangle collapse proposed here. Computational

investigations by normal mode analysis have also been applied to other icosahedral [Tama:
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and Brooks|[2005|, and non-icosahedral viruses [Nguyen et al.[2005]. Thus, shape transi-
tions in icosahedral structures are common and well studied phenomena in the discipline

of mathematical virology [Indelicato et al.[2011} Twarock |2006].

4.7. Model predictions and tests

Shape transitions of viral capsids are environment sensitive, an increase in
pH, or a decrease in metal ion concentration leads to swelling of CCMV [Ban-
croft et al.|[1967; Speir et al. 1995]. Probably, the triangle collapse is environmental
sensitive, too. This enables the stressosome to monitor directly the constitution of the cy-
toplasm. For example, there is no knowledge how osmotic stress activates the stressosome.
The suspicious absence of an osmotic signalling pathway could be elegantly explained by

an induction of triangle collapse in response to the ionic strength.

In Figure [£.6{A) the increase in the probability of collapse (rc,) dominated over the
probability of relaxation (r,1x). The probability of collapse may correspond to the phos-
phorylation rate, and relaxation may correlate with RsbX mediated dephosphorylation.
During stress response RsbX is expressed so as to reduce stressosome activation by in-
creasing the relaxation rate, as shown in Figure [4.6(B). If also the probability of collapse
would be increased, for example by a higher RsbT kinase activity, then the RsbX mediated

negative feedback would fail to limit stressosome activation.

The release of RsbT from the stressosome allows the transmission of the perception of a
stress signal to the downstream ¢® partner switching cascade [Kang et al.|1996]. Motions
of the stressosome components following its excitation with specific stress signals have been
found previously in several studies |[Jurk et al. |2011; [Marles-Wright et al.|[2008; Moglich
and Moffat 2007], and here we propose a radical structural hypothesis that links the
release of RsbT with a shape transition in the stressosome. The hypothesis can be tested
by computational elastic network models or normal mode analysis of the stressosome.
Experimentally, cryo-EM or NMR studies of the activated stressosome could shed light on

the magnitude of motions.

4.8. Conclusions

If icosahedra enable triangle collapse, then the stressosome can in principle
use this mechanism for regulation. The chain of arguments is deductive and a direct
proof needs to be established. It is impossible to estimate the magnitude of the collapse
in the stressosome, though by keeping close to the results from the icosahedra, they can

be substantial. The scientific achievements of this analysis includes a close association of

61



4. Stressosome simulation I1I: Shape transitions

the structure and the function of the stressosome. The communication of the N-terminal
RsbR/YtvA residues to the RsbT molecules is facilitated via a purely icosahedral and
mechanical property. Cellular automata are idealy suited to deal with two dimensional
system with spatial inhomogeneities. These conditions apply to chemotaxis. A chemotaxis
array is located at the poles [Briegel et al. [2009] composed of two trimers of Tar-sensor
dimers, a CheA dimer and two CheW monomers as basic unit (Chapter [4 for details
on chemotaxis) |Li and Hazelbauer|2011]. Cellular automata have already been applied
to chemotaxis [Bornhorst and Falke| 2003; |[Shimizu et al. 2003]. Lattice models have
also been used to study signalling of Ras nanoclusters in the membrane of eukaryotes
[Gurry et al|[2009]. The study of spatial implications of signalling is still developing
[Kholodenko et al.[2010], and advancing technologies have only recently provided glimpses
into the structure of signalling complexes [Cebecauer et al.2010]. Geometric organised
structures are increasingly observed, like the inflammasome [Davis et al. |[2011], or the
apoptosome |Acehan et al.|2002], and the principles I determined in this study will find
utility in virology and other aspects of the systems biology of symmetrical macromolecular

assemblies.

The previous two chapters focused on computational models for signalling events in the
stressosome. The subsequent step in the general stress response signalling cascade is the
partner switch of RsbW between RsbV and ¢, modelled by [Igoshin et al. [2007] and
Locke et al. [2011]. Among the outstanding results of these computational models is their
explanation for the positive feedback regulation of the o operon. The positive activation
provides a high activation capacity [Igoshin et al. |2007], whereas the negative feedback
including RsbW equips the system with pulse-like dynamics [Locke et al.2011]. In the
next chapter, mathematical modelling of the dynamics of a 5-galactosidase reporter of the
general stress response unveils a protease activity that can also participate to generate

pulse like dynamics of oP-dependent S-galactosidase expression.
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Chapter

o8 induced proteome reorganisation

E]Bacteria adapt to environmental challenges by altering their gene expres-
sion program. These gene expression adjustments involve sensory networks, signal in-
tegrators of the environmental and cellular states, eventually regulating the activity of
transcription factors. An important transcription factor of B. subtilis is o®, which is ac-
tivated by a variety of environmental factors including acids, ethanol, heat, and salt, as
well as oxidative stress, low temperature growth, desiccation, energy depletion, and light
[Hecker et al.[2007; [Price|2002; van der Horst et al.[2007]. o regulates about 200 genes
[Helmann et al.|2001} Petersohn et al.|2001; |Price et al.[2001], encoding proteins involved
in functions like multidrug eflux, non-specific oxidative stress resistance, acid stress resis-

tance, membrane integrity, and transport [Hecker and Volker|2001; [Price[2002].

The processes activating the oP-dependent general stress response have been studied
in great detail [Haldenwang| |1995; Hecker et al. 2007; [Price 2002]. o® is activated via
the ‘partner switching’ mechanism [Yang et al. 1996, illustrated in Figure The anti-
sigma factor RsbW binds and hence reduces the free sigma-factor concentration [Benson
and Haldenwang)[1993a]. Release of ¢ from RsbW, and thus activation of general stress
response, is initiated if RsbW binds the anti-anti-sigma factor RsbV. RsbV and P have
overlapping binding sites on RsbW resulting in binding competition. Since RsbV has a
higher affinity to RsbW, an increase in RsbV leads to a release of o constituting the part-
ner switch [Dufour and Haldenwang|/1994]. During non-stress conditions, phosphorylation
of RsbV results in a reduced affinity to RsbW, and most RsbW is associated with o®
[Benson and Haldenwang]|1993b; |Dufour and Haldenwang||1994} [Volker et al.||1996]. En-
ergy limitation and environmental stress induce the activation of the two phosphatases of
RsbV: RsbP and RsbU, respectively, thus initiating the partner switch [Vijay et al.|2000;
Volker et al.|1995b, [1996; [Yang et al.|1996]. Homologous mechanisms of ¢® activation can

!The original work of Liebal et al. (2012) is reproduced by permission of the Royal Society of Chemistry.
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Figure 5.1.: Graphical thesis context of Chapterﬂ The network shows the investigated
signalling effect of 0B to the expression of B-galactosidase and the hypothetical protease
PaseX. In BSA115 upstream regulation of o® is disabled due to the absence of RsbW.

also be found in related bacteria although RsbP is confined to B. subtilis [Hecker et al.

2007; Pane-Farre et al.|2005; [Price|[2002]. Moreover, this control mechanism seems to have

been analogously developed for general stress response in Methylobacterium extorquens

[Francez-Charlot et al. 2009] and is used during activation of sporulation [Igoshin et al.
2007} [Liebal et al.[2010].

5.1. Open questions in the general stress response

Despite the long years of research is our picture of B activation via partner
switching still incomplete. For example B. subtilis mutants lacking the anti-anti-sigma
factor RsbV should normally be insensitive to stress activation, yet if B. subtilis grows

continuously at low temperature strong induction of ¢B-dependent transcription was still

observed in a rsbV mutant [Brigulla et al./[2003]. Also the mechanisms restricting o® ac-

tivity and accomplishing the transient nature of the ¢® response are not fully understood.

oB-activity tests commonly rely on the use of cte::lacZ reporter gene fusions which
use the activity of B-galactosidase as an approximation of ¢P activity. AB-galactosidase
has a long history as a reporter enzyme and provides valuable insights into many cellular
processes [Serebriiskii and Golemis|2000; [Silhavy and Beckwith||[1985]. E. coli and many

other organisms tolerate extremely high protein levels of S-galactosidase, up to 20 % of

total protein while still displaying robust and reliable activities |[Santillan and Mackey|2008;

[Serebriiskii and Golemis [2000]. However, amount of protein and enzymatic activity do
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not strictly correlate, e.g. after cessation of protein synthesis the enzyme-specific activity
might still increase [Cazorla et al.|2001]. In B. subtilis heat-shock results in a quick drop
in S-galactosidase activity, most probably caused by proteases like Lon and ClpCP that
recognize the FE. coli B-galactosidase as foreign [Mogk et al.[1996; Zuber and Schumann
1994].

In the following, I present a collaborative effort with the Functional Genomics Lab at
the Ernst-Moritz-Arndt University in Greifswald and published as |Liebal et al. [2012]. In
this study an rsbW mutant (BSA115), in which expression of o is solely controlled by
the IPTG inducible promoter Pgpac was used to learn more about the function of the
autoregulatory loop of wild-type B. subtilis strains. The wild-type regulation is based on
the o® driven expression of rsbV, rsbW, sigB, and rsbX (Figure . In strain BSA115,
due to the lack of RsbW, all B produced from Pgpac in the presence of IPTG should be
active and allow constitutive expression of a ctc::lacZ fusion. To render the rsb W mutant
viable, the autoregulatory loop of o® expression upstream of rsbV was disrupted by dele-
tion of the oP-dependent promoter. This strain is well suited to test the consistency of a
oB model that I constructed based on a model by Igoshin et al. [2007]. Surprisingly, the
BSA115 mutant displays similar transient induction patterns of §-galactosidase activity
compared to a wild-type strain with an intact autoregulatory loop. Mathematical mod-
elling suggested increased protease or RNase activities as the most likely explanation for
the observations. Subsequent Northern- and Western-blot experiments then proved that
[-galactosidase protein degradation was responsible for the transient oP response pattern
observed in BSA115.

5.2. The reporter protein has transient activity in BSA115

The experiments were performed with three IPTG concentrations (low:
0.1 mM, medium: 0.2 mM, and high: 1 mM). Addition of IPTG activates de novo
expression of B, which then induces the transcription of lacZ of the oP-dependent
cte::lacZ fusion. Employing a cte::lacZ fusion as a reporter, the induction of o® activity
with high ITPTG levels was approximately six times stronger compared with an induction
in the wild type following the addition of ethanol (Praveen K. Sappa, personal communica-
tion). This course of events implies that different IPTG concentrations will cause different
maximum S-galactosidase activities. Maximal (-galactosidase activity should be main-
tained depending on the stimulus level. However, a transient pattern of S-galactosidase
activity is apparent (Figure [5.2(B)). Activity increased to reach a maximum, with higher
IPTG concentrations causing a faster accumulation of S-galactosidase. After the peak, 5-
galactosidase activity declined rapidly and all experiments displayed a similar low activity
275 min after addition of IPTG.
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Figure 5.2.: Shake flask culture experiments of BSA115. Shown are the OD600 (a) and
the activity of S-galactosidase per cell (b). Induction of expression of o® occurs at the
time indicated when cells reached an OD600 of approximately 0.3.

5.3. Modelling of transient responses

Since the a priori assumption about the dynamics of the [S-galactosidase
activity differed with the observations, I hypothesized three mechanisms to
explain the data. All hypotheses assume the expression of a oP-dependent regulatory
protein. The decrease in the observed ([-galactosidase activity seems to be independent
of the growth phase because two cultures with identical growth characteristics (Figure
[.2(a)) had distinct S-galactosidase peaks (0.1 and 0.2mM IPTG) (Figure 5.2(b)). Ad-
dition of high IPTG levels (1 mM) slightly retarded growth and transition to stationary
phase but maximum [-galactosidase activity occurred still within the exponential phase
of growth. These observations indicate that the decrease in [-galactosidase activity is
not concurrent with the transition to stationary phase and is therefore not caused by the
changing availability of RNA-polymerase or ribosomes during stationary phase. Addition-
ally, I generated a model for proteolytic B-galactosidase degradation independent of oP
but dependent on the optical density. In this model, the time of protease synthesis was
chosen to correlate with the transition to stationary phase. The oB-independent model
is not consistent with the experimental data (Appendix . The stability of the IPTG
induction system was tested by adding IPTG at regular intervals (Appendix . These
results indicate that the transient induction of S-galactosidase activity relies on a member
of the sigB regulon. Three different mechanisms and the respective models that might
account for the observations are shown in Figure [5.3] and can be biologically interpreted

as follows:

1. Transcription inhibition model: The expression of a hypothetical protein, de-
noted with X, is induced by . X can be interpreted as a hypothetical transcription

factor that inhibits the activity of o®. Therefore, following induction of o® activity
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with IPTG, higher levels of X are generated and protein synthesis is subsequently in-
hibited. In this scenario, I assume X to be an unspecific protein expression inhibitor,
but I also tested specific inhibition of lacZ expression which gives comparable results
(not shown). This hypothesis resembles findings related to Spx, a protein involved
in the regulation of disulfide stress response. Spx binds to the a-subunit of RNA-
polymerase, thereby regulating expression rates for genes related to disulfide stress
[Nakano et al.|2003; Newberry et al. 2005]. MgsR (YqgZ) is a Spx paralogue in

B. subtilis implicated in the regulation of general stress response [Reder et al.|[2008].

2. oB proteolysis model: In this model the hypothetical protein X is assumed to be a
protease involved in o degradation. This mechanism is biologically inspired by the
regulation of the general stress response sigma factor o° in E. coli by RssB (SprE).
RssB binds to ¢ and delivers it to the ClpXP proteolytic complex for degradation
[Mitrophanov and Groisman|2008].

3. Post-transcriptional instability model: The decrease in the §-galactosidase ac-
tivity can also be caused by degradation events acting directly on p-galactosidase
either at the mRNA or protein level. The hypothetical protein X then represents an
RNase or a protease. Within our modelling framework, I cannot distinguish between
RNase and protease because I combine mRNA and protein production into a single
step, assuming a quasi-steady-state approximation for mRNA. Thus, the correspond-
ing variable in the equations can either represent mRNA or protein. However, I focus
on protein instability as recombinant (-galactosidase has been indicated to be sub-
jected to degradation in response to heat shock [Kriiger et al.|1994; [Mogk et al.[1996;
Schrogel and Allmansberger|(1997].

Although I assume in our models a direct control of oP regarding the regulator, this control
might as well be indirect. There may be one or more intermediary oB-dependent factors
activating the regulator. Direct versus indirect regulation are indistinguishable within our

modelling framework.

5.4. Model setup and parameter estimation

Model details of the applied ODE-systems and the respective network dia-
grams are given in Figure The parameter values that represent the best fit to the
experiments and that are used to generate the time courses are given in Table For the
construction and the analysis of the models, the Systems Biology Toolbox2 for Matlab®
was used [Schmidt and Jirstrand|2006]. SBML files of the model are uploaded to the JWS-
model database and accessible with the following accession numbers: transcription inhibi-
tion (bsa_trscrinhib20122131995), SigmaB proteolysis (bsa_sigbprlysis201221319839), and
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Figure 5.3.: Comparison of the tested models showing their process diagrams, their
mathematical representation and their experimental fit. Only the ‘post-transcriptional
instability’ model can reproduce the observations sufficiently. Northern-blot experi-
ments of lacZ-mRNA and Western-blot experiments with S-galactosidase (Figure
narrow the instability down to proteolytic degradation of the g-galactosidase protein.
Lines finishing with a bar denote inhibition of the associated reaction. Induction by
IPTG is assigned to time 0 in the concentration-time plots.

post-transcriptional instability (bsa_ptinst201221319512). The model and the experimen-
tal data is available on CD in folder ‘5th-Chapter_protease-expression’, and available for
download in the Resource section of www.sbi.uni-rostock.de, named ‘Liebal_thesis-

data.zip’.

The parameters of o synthesis (kys) and o® degradation/dilution (kyq) are highly cor-
related, because they describe the dynamics of a variable for which no experimental infor-
mation is available. To be able to estimate kg, I constrained ky, arbitrarily to 100 min~!.
This procedure is possible since only the ratio of synthesis and degradation determines the
[-galactosidase dynamics. Parameter estimation was performed in the SBToolbox2 with
the particle swarm algorithm that was applied to the model until no fitness improvement
could be achieved [Schmidt and Jirstrand 2006} |Vaz and Vicente|2007]. Measurements took

place with three different experimental conditions. Different levels of o® were induced via

three different medium concentrations of IPTG, namely low, medium and high (0.1, 0.2
and 1mM). The data obtained with low and medium IPTG concentration were used as

training set for parameter estimation, while the data for high IPTG addition served as test
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5.5. Simulation and experiment cycles prove proteolysis

Table 5.1.: Parameter values for the three competing models used to fit the experiments
as shown in Figure The dimension for IPTG concentration is yM and reaction rate
constants are in Miller units per minute (MU min~!). The adapted parameter values for
fitting the post-transcriptional instability model to experimental data in BSG56 in Fig-
ure |5.6] are shown in brackets. Parameter fitting analyses indicate that the parameters
can be estimated independently and have in general a low cross-correlation (Appendix

Q)

Parameter | Meaning Transcription 0B Proteolysis | Post-
Inhibition transcriptional
Instability

IPTG IPTG conc. for P | 100, 200, 1000 (28.9)
activation

Kps o8 synthesis 100 100 100

kpa o8 degradation 441072 5.8-107Y 1.7-1072

Kpe regulator mediated | — 84-107° —
oB degr.

K. lacZ | 3- 41071 1.7-107° 9 - 1077 (8.2 -
galactosidase synth. 1079)

k.q lacZ | 3- 4.1-1072 5.2-1072 1.3-1077
galactosidase degr.

k. regulator mediated | — - 3.2.-1073
[-galactosidase degr.

Kos regulator synth. 7.6-1071 2.10°6 9.3-1078

kyq regulator degr. 9 1.2-10713 1.1-107°

set to evaluate how well the parameters can predict this experiment. I adapted the model
of 0B by Igoshin et al. [2007] to reproduce the oB dependent expression of 3-galactosidase
during the transition from exponential to stationary growth phase in BSG56, Table
The parameter estimation was conducted as explained above. Parameter estimation of the
‘Post-transcriptional Instability’ model with this data took place using only the measure-
ments after 5hours of cultivation since only then oP expression was induced. That time
therefore represents the addition of IPTG in the BSA115 strain experiments. Only the
two parameters I PTG and k,s were allowed to vary during estimation with particle swarm
algorithm. The numerical results of the parameter estimation are shown in brackets in
Table and the fit is shown in Figure In the following section the three models are

compared and verified with the experimental observations.

5.5. Simulation and experiment cycles prove proteolysis

The process diagrams (Figure top) were used to formulate systems of

coupled ordinary differential equations. I then estimated parameter values of the
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models to reproduce our experimental results. The resulting fits are shown in Figure [5.3
The ‘transcription inhibition’ model fails to explain the observed p-galactosidase dynam-
ics, because the model prediction differs qualitatively from the observations (Figure .
I also tested a model for inhibition of translation. Its results are similar to the ‘transcrip-
tion inhibition’ model (not shown). The ‘c® proteolysis’ model is able to capture some
characteristics of the measured dynamics, notably the transient, adaptive nature of the
response. However, this model fails to reproduce the observation at 275 minutes after in-
duction, where the different IPTG additions approaching a comparable low S-galactosidase
activity. High IPTG stimulation results in a disproportional high S-galactosidase activ-
ity in the ‘oPB proteolysis’ model. Therefore, also the ‘c® proteolysis’ model does not
provide a plausible explanation for our experimental observations. By contrast, the ‘post-
transcriptional instability’ model successfully reproduces all aspects of the experimental
observations, i.e. transience of the dynamics and comparable S-galactosidase activity at
the end of the experiment. The model is even able to reproduce the inverted activity
results for the three IPTG concentrations at 245 min. At that time, low IPTG addition
causes highest activity while high IPTG addition results in the lowest signal. The following

sections provide a more detailed analysis of the ‘post-transcriptional instability’ model.

Model simulations and their analysis allowed us to identify instability of either mRNA
or (-galactosidase protein as an explanation for the observed transient dynamics of -
galactosidase activity in BSA115. However, mRNA and protein instability is indistin-
guishable within the model because I assumed a rapid and direct correlation between
mRNA and protein level to limit the number of unknown parameters. In effect, we
arrive at a variable that combines information about mRNA and protein. To distin-
guish between mRNA and protein level, my collaboration partners at the University of
Greifwald performed Northern- and Western-blot experiments to measure lacZ-mRNA and
[B-galactosidase-protein levels. mRNA levels during IPTG activation are shown in Figure
and display persistent high lacZ-mRNA levels. The smear besides the detected main
transcript is explained by specific hybridization of the probe to exo- and endonucleolyti-
cally truncated degradation intermediates of the full-length mRNA as well as still nascent
lacZ-mRNA molecules. The Western-Blot experiments mimicked the transient nature of
the p-galactosidase activity. Remarkably, in the absence of IPTG, and hence at low basal
level of 0B activity, S-galactosidase remained stable (Figure (B) lower panel). The faint
bands of S-galactosidase detected in the absense of IPTG induction are likely a reflection

of low basal level expression from the leaky Pgpac promoter.
One of the primary suspects responsible for degradation of [-galactosidase was the

ClpCP protease [Kriiger et al[1994]. This complex is activated by stress and is also o®

sensitive. In the collaboration with Uwe Volker at the University of Greifswald, we used
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5.6. Proteolysis as part of transient wild-type responses
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Figure 5.4.: (A) Northern-blot results for lacZ mRNA. Induction of oB expression and
activity of BSA115 with 1mM IPTG started at Omin. Induction took place in early
exponential phase as indicated in Figure [5.2fa). The blot was exposed for 30 min. (B)
Western-blot results for the 5-galactosidase protein which was detected at 120 kDa with
respect to the marker (lane-M) used in this experiment. The upper panel reflects (-
galactosidase levels after induction of o by the addition of IPTG to a final concentration
of ImM at Omin. After 120 min the protein level declines, while the negative control
without IPTG induction (lower panel) displays a continued low [-galactosidase. The
blot was exposed for 30s. The experiment was performed by P. K. Sappa at the Ernst-
Moritz-Arndt Unversitat Greifswald.

the clpP-deletion strain BSG115 and followed the stability of 8-galactosidase. The reporter
protein signal was still transient, comparable to the signals in the clpCP wild-type strain

indicating that the ClpCP protease is not responsible for the observed [-galactosidase
instability (Figure [5.5).

5.6. Proteolysis as part of transient wild-type responses

In experiments with BSG56, a wild-type strain with respect to ¢® regula-
tion, cP-dependent gene expression first increases during transition into sta-
tionary phase, subsequently followed by a decrease in the level of the o"-
dependent reporter protein, often a (-galactosidase-reporter system, close to
pre-stimulus activity (compare (-galactosidase measurements in for example
Brigulla et al.| [2003]; Delumeau et al. [2004]; Kim et al. [2004b]; Scott et al.
[2000]; Zhang et al.| [2005]). Our presumption for the rsbW mutant strain BSA115
was to observe an initial increase in the (§-galactosidase activity, with a sustained high
and IPTG specific S-galactosidase activity. Negative feedback control mechanisms can
explain transient responses and |[[goshin et al| [2007] and Locke et al.| [2011] proposed an
RsbW-mediated negative feedback. Indeed, the model of ¢P regulation presented there

can reproduce the adaptive p-galactosidase response shown in Figure [5.6] where I fitted
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Figure 5.5.: §-galactosidase expression in a clpP knock-out strain. The filled triangles
show the g-galactosidase activity following addition of IPTG at 100 min to a final con-
centration of 1 mM. Similarly to the dynamics in the wild type, the reporter activity
increases and drops in the isogenic clpP deletion mutant approximately 80 min after in-
duction with IPTG. The negative control without addition of IPTG is shown with open
triangles. Optical densities are represented as filled squares for IPTG and open squares
for +IPTG. The experiment was performed by P. K. Sappa at the Ernst-Moritz-Arndt
Unversitdt Greifswald.

the model oP-feedback (‘sigB fbck.” model) to an experimental course of general stress
induction in a culture experiment with strain BSG56 (blue-dashed line). There is no on-
going [-galactosidase expression in our experiments with BSA115 (Figure , instead
the response was similar to the transient response known from an rsb W wild type. The
oB-dependent proteolytic activity that explains our observations in BSA115 was probably
also present in previous experiments using BSG56. Thus, I sought to test how much of the
transient nature of o activation in BSG56 could be attributed to proteolytic degradation
of -galactosidase. The continuous red line in Figure [5.6| represents a fit of the proteolysis
model (‘post-translational instability’ model in Figure |5.3]) using experimental data from
BSG56. Only two parameters, IPTG and ks, both not associated with the properties of
the hypothetical protease, were used for parameter estimation. For the reproduction of
the wild type, IPTG corresponds to the cellular energy level (approximated by medium
glucose concentration). The synthesis rate of S-galactosidasek,s was estimated to allow
for fitting of the different absolute Miller unit maxima in the two experiments. While
not necessarily being the only explanation for the transient dynamics, the mathemati-
cal proteolysis model (prot. model) in Figure suggests an involvement of proteolytic

degradation of -galactosidase.

72



5.7. Implications of reporter protein instability

200f
—prot Model
---sigB fbck. Model
150 + Exp. Data

100

50

A
A}
*

’

.

4 "1--7--.:-.I Al
0

2 4 6 8 10 12
time in hours

p-galactosidase activity (MU)

0

Figure 5.6.: Reproduction of general stress response during starvation in BSG56. The
activity of the general stress response transcription factor oP was measured with a
cte::lacZ fusion. Black points represent experimental data. The blue-dashed line repre-
sents a fit of a ¢® model that includes the regulation of ¢® activity by the Rsb-proteins.
The red-continuous line represents the fit of the ‘post-translational instability’ model
for the transient activation of the general stress response.

5.7. Implications of reporter protein instability

The results show an activation of proteolytic degradation of 5-galactosidase following
IPTG induction of ¢B. T adapted the model of o response by Igoshin et al.| [2007] by in-
cluding glucose starvation as a trigger for activation and fitting it to existing experiments.
This model can reproduce experimental observations of o® activation and deactivation as
represented by the blue-dashed line in Figure In the collaboration with Uwe Volker
at the University in Greifswald, we then performed an experiment in which we used the
B. subtilis strain BSA115, characterized by stable IPTG-mediated induction of oP ex-
pression and lack of negative regulation of o® activity, due to a frameshift mutation in
rsbW (see Material and Methods section). Unexpectedly, an induction of o with IPTG
resulted in a transient activity of S-galactosidase as indicated in Figure Using mathe-
matical modelling to compare different hypotheses lead to the conclusion of an instability
of either mRNA or protein as potential causes for the transient activity as demonstrated
in Figure Subsequent Northern and Western-blot experiments confirmed proteolytic
decay as the cause for the decrease in [-galactosidase signal (Figure [5.4)). The transient
activity in BSA115 resembles the transient activity observed in experiments in a wild-type
B. subtilis strain (BSG56) containing an intact o® regulation. I tested whether proteolytic
decay is at least partially responsible for transient -galactosidase dynamics in the wild
type by adapting the ‘post-transcriptional instability’ model to experimental observations
in BSG56. Indeed, the results indicate that oP-induced f-galactosidase instability is a

process with potential contributions to the adaptive behavior of §-galactosidase in the
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wild-type. Two questions remain open: i) Is the increase in (-galactosidase proteolysis
specific to the recombinant -galactosidase? and ii) How can the different stresses that
activate the oB-related general stress response diversify the expression of oB-dependent

genes?

Results by Reeves et al.| [2007] point to the importance of the ClpP protease for the
regulation of 0P activity. A clpP mutant strain results in lasting ¢® activation measured
with S-galactosidase activity from a ctc::lacZ fusion [Reeves et al.|2007]. This leads to
the assumption that ClpP could be associated with the turnover of o® dependent compo-
nents that result in a deactivation of o® in the wild type [Reeves et al.[2007]. However,
further experiments performed by us revealed that ClpP did not affect the stability of
[-galactosidase. Hence, different proteolytic mechanisms may lead to a reduction in o®
dependent (-galactosidase activity in our experimental setup. Similarly, our results stress
the importance of induced proteolysis, albeit now it is the reporter protein S-galactosidase
being targeted for degradation. In our experiments, transcriptional activity of ¢® is not
diminished while the reporter signal still decreased. The previous list of possible mech-
anisms that could explain the transient nature of the o response is neither complete
nor are those mechanisms mutually exclusive. Further work is required to quantify and

discriminate each contribution and to uncover new modes of regulation.

5.8. A wider context of transient responses

The mechanisms I study to explain the experimentally observed transient
adaptive-like dynamics are derived from established biological processes asso-
ciated with bacterial stress response. An analysis about all possible topologies that
can result in adaptive dynamics was performed by Ma et al.|[2009]. The authors found only
two configurations for robust adaptation given suitable parameter combinations: integral
feedback (buffered negative feedback), and incoherent feedforward. The ‘transcription in-
hibition’ and the ‘c® proteolysis’ models are examples for integral feedbacks, while the
‘post-transcriptional instability’ model is an example for an incoherent feedforward loop.
According to Ma et al.|[2009], there are few biological cases where incoherent feedforward
loops are used to achieve adaptation. Although I do find such a motif explaining our
observations, the wild-type regulation of oB-mediated general stress response is better
known for its use of integral feedback regulation via anti-sigma factor RsbW [Benson and
Haldenwang| |1993a] and phosphatase RsbX [Volker et al.[1995a]. Thus, the observation
by Ma et al. [2009] remains valid: adaptation generated by incoherent feedforward loops

is rare.
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5.9. Conclusions

The research focus with respect to c®-mediated general stress response has
been on its activation whereas less information is available about mechanisms
of the shut-off of ¢ activity. Using j-galactosidase to investigate ¢® deactivation
is complicated since this protein is prone to degradation particularly in the context of
overproduction (this study) and heat shock [Mogk et al.||1996]. Several mechanisms can
contribute to the transient response of oB-dependent transcription: 1) silencing of oB
by subsequent response strategies, 2) adaptivity caused by negative feedbacks, and 3)
increased proteolytic instability after o® activation. Silencing of ¢® by subsequent re-
sponse strategies could be an inevitable event of differentiation and adaptation processes
of B. subtilis following deteriorating environmental conditions. Activation of processes,
like sporulation or biofilm formation, could inhibit activity of ¢® much like they modulate
activity of competence and chemotaxis [Liebal et al.|2010; [Msadek [1999]. Subsequently,
transcriptional activity of ¢® declines. Several studies have promoted the hypothesis that
negative feedbacks within the partner switch regulation of o® result in its adaptive behav-
ior [Igoshin et al.|2007; [Scott et al.|2000; [Volker et al.||[1995a]. Activation of ¢® leads to
increased expression of the anti-sigma factor RsbW and the phosphatase RsbX resulting
in an increase in RsbV phosphorylation. This in turn releases RsbW to sequester and
mute o2. This mechanism can result in a decline of cB-dependent transcriptional activity
as well. Locke et al. [2011] studied how the ¢® system uses noise in combination with
a kinase-phosphatase pair (RsbW-RsbP) to adjust stress response activation frequency.
These authors are able to explain the transient dynamics they observe, only with the
RsbW negative feedback and they disregard changes in YFP stability. Transient dynam-
ics are generated in our -galactosidase system via increased degradation following &P

activation, and this offers an additional mechanism to generate or exaggerate transients.
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Chapter

Final remarks

How does an organism perceive its environment? How do bacteria process information and
regulate gene expression? The general stress response, and particularly the stressosome,
enables us to learn about the organism-environment interface. The stressosome is a sen-
sor of environmental information in the cytoplasm and processes information to regulate
an appropriate response. The original stimuli are varying in their nature: stressosome
responses have been observed upon exposure to stresses such as heat, osmolytes (NaCl),
ethanol, and UV light [de Been et al.[2011; Hecker et al.|2007]. However, only for UV light
was the mechanism of signal perception identified [Moglich and Moffat|[2007]. This raises
the question of how the other, seemingly non-related, stressors activate the stressosome.
There is increasing evidence that ethanol, heat, and NaCl have a common physiological
effect on B. subtilis: the generation of reactive oxygen species (ROS) [Hoper et al. 2004}
Mols and Abee|2011; Reder et al.[2012]. These results directly lead to the question whether
ROS participate in an intermediary signalling step between environmental stresses and the

stimulation of the stressosome.

ROS are generated by the premature leakage of electrons to oxygen during electron
transport in aerobic respiration, which is particularly caused by the stressosome stressors
ethanol, heat, and NaCl [Mols and Abee|[2011]. Not only are ROS a common consequence
of different stresses, but my results additionally reveal an identical activation profile in
the signal-response behaviour for ethanol and NaCl [Liebal et al|[2013]. The cellular
response to 3% ethanol is as pronounced as that to 488 mM NaCl, presumably because
these stresses produce the same amount of secondary oxidative stress and ROS. How ROS
activate the stressosome is still unknown. B. subtilis specific peptides are believed to be
involved, because the transplantation of the ¢® operon from B. subtilis to E. coli fails to

conserve stressosome activation following ethanol or heat shock [Scott et al.|[1999).
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Although it is still a matter of debate whether the different stressors ethanol, heat, and
NaCl act on a common intermediate, the Collapse Hypothesis of Chapter[fand all ensuing
events are stressor-independent. These events are derived from the general properties of
the geometric structure of the stressosome being either a truncated icosahedron (vertices
as proteins), a pentakis dodecahedron (faces as proteins), or a regular icosahedron (edges
as protein dimers), depending on the viewpoint. Common to these geometries is their
property to allow three protein dimers (triangles) to perform motions - the collapse - that
conserve the dimensions and distances of the geometry. The application of the Collapse
Hypothesis to the stressosome provides an explanation for the communication between the
signal perception by the N-terminus of RsbR to the RsbS-associated protein RsbT. These
structural rearrangements prime RsbT to phosphorylate its target RsbR and subsequently
RsbS, ultimately causing RsbT to dissociate. In order to switch the stressosome to its
pre-stimulus condition, RsbS-P and RsbR-P need to be dephosphorylated to allow RsbT
reassociation, and to cease RsbT kinase stimulation [Hecker and Volker|2001; Hecker et al.
2007} [Price 2002]. During the resetting of the stressosome, a faster dephosphorylation of
RsbS is observed compared to that of RsbR, thus allowing the reassociation of RsbT
to a stressosome containing a still-phosphorylated RsbR. Slow RsbR dephosphorylation
is reproduced in the monomer-stressosome model described in Chapter [3, where I also
show that the phosphatase RsbX does not dephosphorylate RsbR for mild and medium
stress insults. As a consequence, reassociated RsbT is stimulated by RsbR-P, causing the
repeated phosphorylation of RsbS. The RsbR-P dephosphorylation is the slowest event in
the signalling pathway, and by regulating its rate, the cell modulates the response duration.
In conclusion, the stressosome output is independent of the quality and duration of the

original signal.

With ROS being a shared consequence of ethanol, heat, and NaCl stress, it is not
surprising that the transcriptomic responses are highly similar. I use the word ’highly’,
because the transcriptomic profiles of heat, ethanol, and salt are more comparable than
the profiles of 266 other widely differing environmental conditions tested by [Nicolas et al.
[2012]. The physiological effects of ROS include the perturbation of the NADT/NADH
balance, the redox-system, and disulfide bridges [Mols and Abee/2011]. Among the many
stress responses activated by oP is the expression of proteases for the degradation of
chemically altered proteins |[Gottesman|[2003]. Several oB-dependent proteases have been
identified already [Price et al. 2001; Reeves et al.|[2007], and the results of Chapter E’)’]
provide evidence that a protease is responsible for the degradation of the heterologous
protein [S-galactosidase. These results confirm the importance of proteases during the
stress response, but they also caution against the use of the heterologous reporter protein

[-galactosidase.
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Computational models of the different signal processes in B. subtilis have helped to
answer unresolved questions and to state new ones [Liebal et al|2010]. Models that
integrate the complete environmentally activated oP-dependent general stress response
are within reach. In Chapters [3 and [{] of this thesis, I provide the first computational
models for stressosome activation by environmental factors. By reproducing a wide range
of experimental data, these models faithfully capture stimulation by ethanol, heat, and
NaCl, although they omit the partner-switching cascade of direct o® release. This partner-
switching mechanism and its activation during energy stress was modelled independently
by Igoshin et al.|[2007] and [Locke et al.| [2011]. A full reproduction of oB-dependent stress
response requires a combination of the stressosome and partner-switch models. However,
hybrid modelling approaches are necessary, because although differential equations are
beneficial for modelling the partner-switch, they are incapable of capturing the structural

properties of the stressosome.

The models I present for the stressosome add to the foundation of models to come
that integrate the o® response into the global environmental signalling landscape. This is
possible for B. subtilis because it has only slightly more than 30 two-component systems per
cell [Kunst et al.[[1997], which are the primary means of bacteria to sense the environment
[Mitrophanov and Groisman 2008]. As a soil generalist, how much does B. subtilis need
to know about its environment, and how much information can be gathered in soil at all?
Answering these questions will help classify bacteria, and enable us to determine lifestyles
based on genomic information. However, this information extends beyond bacteria: we
learn about our environment. Life means sensation, and bacteria are the most widely
distributed sensors. By uncovering bacterial adaptation strategies, we learn more about
the challenges and diversity in niches like hydrothermal vents in oceans, the valleys of
Antarctica, or even our metazoan bodies that happen to be substrates for a bacterial

success story.
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Appendix

Simulations of RsbR-paralogue dynamics

Five paralogues of RsbR (RsbRA, -B, -C, -D, and YtvA) are present in B. subtilis. RsbR
sense environmental signals, however, the paralogues RsbRC and RsbRD are also receptive
to energy stress [Martinez et al.[[2010]. For further characterisation, |Akbar et al. [2001]
studied the response of stressosomes composed only of RsbRC and RsbRD, of both of
them (RsbRC+RD), and the wild-type (RsbRA+RB+RC+RD), during onset of station-
ary phase, Figure 1(A). In conclusion, each RsbR paralogue shows a different pre- and
post-stimulus excitation. This phenotype was reproduced in the model (Figure [A]L(B))
by increasing the phosphorylation parameter of RsbS, kphs. The white circles represent
the wild type, kphs = 0.6. The black circles in Figure (A) represent RsbD stresso-
somes, with a higher §-galactosidase activity. This is reproduced in the model by setting
kphs = 0.75. The highest 8-galactosidase activity was measured for RsbRC (squares, (A)).
This was simulated by setting kphs = 0.9 (square, (B)). The mixture of RsbRC and RsbRD
with energy insensitive RsbRA and RsbRB lowers the overall stressosome sensitivity. In

the model this corresponds to a reduction of the RsbS phopshorylation rate from 0.9 to 0.6.
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Figure : Stressosome activation over time during transition to stationary phase [Akbar
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Appendix

Triangle collapse parameter scan

The inspection of the solution space whilst changing two parameters allows to determine
parameter combinations with biologically relevant or interesting dynamics. In Figure [4.6
of Chapter[f I show parameter scans for the frequency of triangle collapse for different
parameter values of r.,; and coop in combination with r,;,. Here, I show the remaining
parameter combination between 7., and coop with the parameter r,;, = 0.9. Following
intuitive expectation, the fraction of collapsed triangles is lowest for small values of both
reoi and coop, and an increase in their values raises the collapse fraction. The collapse

fraction is lower for small values of r.,, because coop cannot complement the high value

chosen for 7, in this condition (Figure (B))

Figure [B]l: Triangle collapse fraction with different parameter values of coop and 7.
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B. Triangle collapse parameter scan
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Appendix

Supporting information for B protease

expression

IPTG remains an active inducer

The experimental results of the IPTG induction of BSA115 show a transient peak of
B-galactosidase activity (Figure in Chapter E‘)’I) Among the possible explanations is
breakdown or deactivation of [IPTG. The experimental partners at the Ernst-Moritz- Arndt
Universitat in Greifswald tested the hypothesis by repeatedly adding IPTG to the reac-
tion. The induction of o was started by addition of IPTG to 1 mM final concentration
at 100 min. Following, IPTG was added at regular time intervals to replenish any deac-
tivated IPTG. The increased IPTG concentrations neither increased the [S-galactosidase
levels further nor did they prevent the activity drop at about 200 min.
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Figure : [-galactosidase activity and optical density of the repeated o® stimulation by
IPTG.



C. Supporting information for o® protease expression

Model for growth dependent (-galactosidase expression

In addition to the o®-dependent mechanisms I discuss in the main part (Figure Chap-
ter @, I tested a model of a oP-independent, i.e. growth rate dependent, model of the
activation of the protease Figure [C]l. The variable Sgn is an external signal for the ex-
pression of protease X. The growth rate dependent model is only plausible if the time
for the activation of the parameter Sgn coincides with the transition of the culture to
the stationary phase. However, this model fails to reproduce the data qualitatively for
the following four reasons: 1) for an optimal fit of 1mM IPTG, Sgn has to be active
after 5min of IPTG addition; 2) the final Miller Units differ according to the intensity of
IPTG stimulation; 3) the peak delay for 0.1 mM IPTG is too low; and 4) the simulated
B-galactosidase activity of 1 mM IPTG (cyan) is too high. In conclusion, growth transition
effects are unlikely because the time of protease activation in the model for high IPTG is

5 min, whereas the experimental growth transitions is at about 60 min.
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[-galactosidase degradation.

of a model of ¢B independent

Parameter | Value in % Parameter | Value in Xlg optimal times for Sgn
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Analysis of Parameter correlations

To ensure that the parameter estimation procedure is unique for each parameter, I per-
formed a parameter correlation analysis for the ‘transcription inhibition’ (A), ‘SigmaB
proteolysis’ (B) and ‘prost-transcriptional instability’ (C) models. Due to the small sys-
tem sizes most parameters are uniquely identifiable without linear dependence on other
parameters. Parameter correlations were determined on the basis of 500 parameter es-
timations for each model over all three IPTG-concentrations reproduced in Figure [5.2
in Chapter[5 Each estimation started with a randomized parameter set with a ten-fold
range around the parameters values of Table The procedure was performed with the
SBToolbox2 [Schmidt and Jirstrand|[2006], and the integrated particle swarm algorithm

[Vaz and Vicente [2007].
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Figure [CB: Absolute correlation of model parameters for (A) transcription inhibition, (B)
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The Stressosome protein complex mtegrates signhals

e Prevalence: dispersed in bacterial clades (Bacillus, Listeria, Streptomyces, / \ / \
Vibrio, Deinococcus)

e Function:  signal integration hub fed by sensors of physical stimuli
e.g. light, EtOH, salt stress, chemical substances

® Structure: truncated icosahedron, radius of about 10 nm. R and S
proteins form the backbone. Protein T associates reversibly
with S. Each protein in the structure has three nearest
neighbours. In total there are four combinations of
neighbouring proteins (R1, R2, R3, and S1).

e Reactions: T phosphorylates R and S. Phosphorylated R (RP) stimulates

Traditio et Innovatio

o =
Frindet A8

\/ \/ /
(RsbX)

Feedback phosphatasa

kinase activity of T. Phosphorylated S (SP) repels kinase T 171 RsbRB) TI71 559
from stressosome. SP inhibits T kinase activity. Free T BRstraAl Rebs ) =—— (B)sorAlRsbs ()
activates stress response. There exist four R homologues. SIressUsomel Kinase

® Activation: Signal perception increases the phosphorylation of R by @
unknown mechanisms.

e Research: What are the advantages of using four paralogues of R in the Uachea l
stressosome? Rshu

Model & Simulation Magnitude and Sensitivity

.Phosnhorvlatmn of R3 reaulates response magnitude.

5 ¥ 3 ® Each protein is numbered together : leecaea
| \ ! with a list of the three nearest o T In a predictive simulation three
A N neighbours. 3 ! ® values for the kinase activity of
51 £ o i i H
7 eInitial condition: protein phospho- ’ \ T on R proteins with R3 neigh-
5 rylation probability of 0.5. fou i bourhaod are tested (O'DP
“Na y P J H b Padses, black, 0.1-blue, 1-red). Shown is
eFor each nelghbourhood R1, R2, R3, and S1 the kinase T can umu;*'::::"*::.::r b total phosphorylation of R and S
be differently stimulated. Stimulation of phosphorylation WL‘* (circle and star) over time.
depends on the number of RP and SP in the neighbourhood. 0 e s s o
An example for the probability of stimulation is given for R2: Conclusion: with rising kinase activity on R3 the magnitude of

phosphory- probability stress response increases likewise.

lation of of kinase T gtimlation Transition Table (left): In the Oclooperativity of R2 regulates response sensitivity.

neighbours stimulation
(SRR} (R} configuration R2 the central R has three

{000) (o)  neighbours {SRR}. If its S is phospho-  af Here, cooperativity is the stimu-

{0.1,0} {05}  rylated {1,x,x} there is no stimulation of § lation of kinase activity by RP.
{0,1,1} {1} T. Only for one or two RP stimulation § Different hypotheses can be
{1.0.0} {0} occurs (0.5 and 1). o, tested by changing values in
{1.1.0} {0} g the Stimulation Transition Table.
{111} {0} Toaf ¥ 4 Shown is the steady state phos-

eQther probabilistic parameters: phorylation at various stresses.

0.02 = —

- war:0. RP—>=R “somincpr”
T activity: R———=RP — : . .
peace:0.1 Sp 1 s Conclusion:  sigmoidal shape reproduces experi-ments,

cooperativity of R2 regulates signal sensitivity.

Novel insights to the Stressosome

Light Eron o ReoR paraiogue o The various homologues of R may be stimula_ted by differenj: stresses. )

) .. weStress response can be regulated by adjusting absolute kinase activity of T or cooperative
_ﬁ?_:-_ effects of RP to stimulate kinase activity.

,_o'i'-',‘l Different protein positions are differently effective in changing dynamics (e.g. R3-magnitude

or R2-sensitivity).

o Stressosome integrates signals: combination of stresses produce different outcomes than

hE there action alone - fine tuned responses.

y, L . T oot st ¢ Changing the stressosome composition over time to establish adaptivity: if at constant stress

stimuli an R homologue is expressed with altered cooperativity that leads to reduced signal

sensitivity, the stressosome could be muted.

UIf W. Liebal >
£ | Buncesministerium Systems Biology & Bioinformatics @ e

fiir Bildung . .
und Forschung Institute of Computer Science |

University of Rostock
ulf.liebal@uni-rostock.de




Elucidating Unexpected Reporter Signals
for o8 Activity in B. subtilis

UIf W. Liebal*

Leif Steil § Uwe Volker §

Background

Praveen Kumar Sappa §

Systemns Biclogy of Micoormanisms

Thomas Millat*

Olaf Wolkenhauer*

» The 68 regulon confers B. subtilis with the ability to respond to various stress stimuli and adapts it for future stress incidents. Metabolic
expenditures are reduced, in turn, expression of about 150 protective genes is activated.

- Starvation activates the anti-anti sigma factor RsbV that inhibits RsbW by complex formation. RsbW itself is the anti sigma factor of o8.
Hence, an inhibition of RsbW results in release of 68 and consequently in global expression changes. RsbW can phosphorylate RsbV
thus inactivating it. The proteins RsbW and RsbV are transcribed by 8 and it is assumed that increasing levels of RsbW lead to an

inactivation of RsbV and to an adaptive 68 response.

» To monitor different levels of 6B-dependent expression, we modulated 68 expression in a rsbW mutant via IPTG induction of a Pspac promotor cloned
upstream of the oB. B-Gal activity of a ctc::lacZ fusion was used as reporter for 6® dependent expression. Direct activation of 6 in this strain (BSA115) is
thought to activate reporter protein synthesis and dysfunctional feedback regulation should result is lasting p-Gal activity.

Surpise and Explanation

« Addition of IPTG induces expression of -Gal, but activity is transient.
» Maximal 3-Gal signal is independent of growth rate
* B-Gal decrease starts before transition to stationary phase for 1mM IPTG.

« All B-Gal signals drop to uninduced signal strength
» High o8 activation - Strong B-Gal decrease
* Low o® activation > Weak B-Gal decrease

Models of the most simple three explanatory hypotheses are fitted to the experimental data to test how well each is able to reproduce the observations:

Transcription Inhibition

o8B Proteolysis

B-Gal Proteolysis

PT
j»g? 7—>ReTgB

10
acZ— - acZ—>

ER.
P

%n“ = kpIPTG — kygo®
dt

47 M Ll
— kpalacZ . . S LacZ = kouo® — kealacZ

B
— kT d
1+regh - dt
ot L d ) B
=T et kyaregb. J - ‘T“rt’yh=k‘”a — kearegh

W e gan mem o mn o am e
[ER L

X transient dynamics, adaptivity

X shifted peak positions

X comparable final state level

Adaptive & behaviour

Hypothesis
Can B-Gal proteolysis contribute to the adaptive o8 response in a wild type B.
subtilis?:
. Taking the B-Gal proteolysis model parameterized with BSA115
experiment as starting point.
. Use of a previous experimental data of -Gal in wt B. subtilis. o® response
is activated by starvation at the transition to stationary phase.
. Two parameters (IPTG, k_,), that are independent of the putative protease

» Pzg

dynamics, are allowed to vary during parameter estimation.

Result

The B-Gal proteolysis model (red) can fit
a wt o response with adaptive
behaviour as well as a model that relies
on negative feedback regulation
including RsbW/V proteins (blue). :

Conclusion

Therefore, the hypothesis can not be
rejected and proteolysis of B-Gal can
contribute to adaptivity in the wild type.
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v/ comparable final state level

Conclusions and Perspectives

* B. subtilis BSA115 shows adaptive, transient dynamics of -Gal following 8
activation by IPTG. Modelling and Northern blot experiments suggest o®
induced B-Gal proteolysis as the origin.

+ 68 induced proteolysis of 3-Gal in BSA115 was assumed to occur also in B.
subtilis wild type cells, raising the possibility that p-Gal instabilities might
contribute to the transient nature of the o® response — testing the ability of the
B-Gal proteolysis model to reproduce wild type adaptivity confirmed this
assumption.

* Therefore, part of the adaptive dynamics of B-Gal reporter signal is due to
induced protein proteolysis, questioning the applicability of B-Gal reporters.

* Research focus on o8 has been on its activation and the cause of the
transient response is not well known. Our results add proteolysis to the
possible mechanisms: in
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Analysis of a Model of 6B Activation
following Glucose Starvation

Ulf W. Liebalf, Praveen Kumar Sappa¥, Hendrikje Hildisch#,

: ; . X | Systemns Biology of Micborgcmsms
Thomas Millatt, Leif Steilt, Michael Heckert, Uwe Volkert, Olaf Wolkenhauert
TUniversity of Rostock, Systems Biology and Bioinformatics Group, Germany;
*Ernst-Moritz-Amdt-University Greifswald, Institute for Microbiology and Institute for Genetics and Functional Genomics, Germany;
The Bacell-SysMO project [1]
growth

The SysMO project is a European transnational funding and research initiative on "Systems Biology of Microorganisms". The goal
pursued by SysMO is to record and describe the dynamic molecular processes going on in unicellular microorganisms in a
comprehensive way and to present these processes in the form of computerized mathematical models.

l stationary phase
stress/starvation
egetative proteins

(housekeeping) gy o5 proteins

proteome of proteome of

The objective of this project is an integrated understanding of the metabolic and genetic network that controls the transition from growing cels starving cells
growth to glucose starvation, as shown in Fig. . This transition is a fundamental ecophysiological response that serves as a |
scientific model for environmental signal integration and is pivotal for industrial fermentations of Bacillus that occur predominantly E' 0
under nutrient starvation. W +B == WB
W Ve wy 8w . vp
The o8 regulon (Fig.@) confers B. subtilis with the ability to respond to stress stimuli and adapts it for future stress incidents. Wy 4 vl wv, - &—w . vp
- Anti-sigma factor W binds B thereby precluding formation of RNA-polymerase holoenzyme. (React.@)) vp—2.y
* The affinity of V towards W (React. @) is reduced by phosphorylation of V by W (React. 9). al
« Following Glc-starvation VP dephosphorylation rate is increased resulting in V increase. (React. 9) ©
+ V associates with W thereby reducing free W level. (React. 9) "\A‘
» Reduced W level stimulates dissociation of WB complex. (React. o) e/c{'(B’W’V)
- Increased levels of B (cB) associates with RNA-polymerase to induce expression of genes. (React. @)
« Proteins and complexes are degraded with a first order mechanism (React@) {B’W’V'WB }—@——z
WV,WV2,VP

Direct Parameter Estimation Approach

3| X 6le Simulation of Glucose Starvation:
« ctc::lacZ reporter gene construct provides information on the transcriptionally active B level.
fle—=— X =0 * Glc concentration is derived from the OD with a fitted model shown in Fig.

Glucose(6/c)-Biomass(X) model

Interpretation of Simulations:

Parameter estimation process (Fig.El) using sequentially particle swarm and simulated annealing optimization still allows for
large possible parameter realizations with good fitting. The model-experiment relationship is therefore non-identifiable.

The simulations agree with the principles of general stress response outlined in the introduction.

Parameter Fitness Correlations EL 1 ' | Transcriptomic Results for Regulon and Operon

7 Fermentation 2009.02.04 Fermentation 2009.02.04
Goal:
determining parameter ranges that satisfy pre-defined 4
observations for the fitness of stress response.
Fitness: low level of free B, high level of WB complex.

Procedure:

1. select two parameters & corresponding boundaries
2. randomly combine the two parameter values

3. evaluate the model fitness for each combination

trsor-ome expre:
rscr-ome expression ratio

-2 0 2 2 0
time in hours time in hours

Transcriptome:

- activation of expression of the o® regulon during entry into starvation (Fig.@).

« expression of the operon fails to increase (Fig. E[) despite the positive trans-
criptional feedback loop of o8 on its operon.

Results: -
phosphorylation and dephosphorylation: Antagonistic reactions, only a
narrow parameter region is physiological feasible. (Fig.)

protein expression and degradation: Antagonistic reactions, but fitness is
very sensitive on the balance of both reactions. (Fig.@) Possible reason: sigma factor competition on the operon.

Conclusions and Perspectives

A model was developed that reproduces the available experimental data. However, the models are non-identifiable meaning that non-unique parameter sets can
reproduce the data. To render the model identifiable, model reduction processes will be conducted to lump parameters and combine components. Additionally,
we will gather more diverse data including concentrations of components in the regulation upstream of B-activation.

The fitness of parameter combinations shows high robustness of the system against changes in WV association rate. Considering pre-stress steady state fitness
conditions will help to determine missing parameter values. Similar investigations will be conducted for possible steady state conditions during long lasting stress
conditions.

Transcriptome results show that gene-specific sigma factor competition needs to be implemented in the models and that unknown post-transcriptional events
modulate protein concentrations.
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Dynamic behavior determines design
strategies of regulation in metabolic networks

Ulf W. Liebal"*,

Olaf Wolkenhauer!

Jeong-Rae Kim?, Kwang-Hyun Cho?*
*E-mail: ulf.liebal@uni-rostock.de, ckh @kaist.ac.kr

"University of Rostock, Department of Computer Science, 18051 Rostock, Germany

http://www.sbi.uni-rostock.de

2Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology
(KAIST), 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea

~

G -
T -

Bir%inE S

Bio and Brain Engineering

5B
o

http//:sbie.kaist.ac.kr
Enzyme activities are tightly regulated
N
Our goal is to uncover design principles of regulation of enzyme activity that optimize an objective function in a simple metabolic network. In metabolic networks enzyme activity is tightly
regulated to adjust metabolite dynamics according to demands on the metabolism.
. 1]:‘11 ety — kgt Plom, W) = ); Exprosson contrl by sgmeidl urcion
i Flon, W) — kgey oo .
- The function P controls synthesis of g | . -
Enzyme activity is defined as a product of the enzyme catalytic Rate equations for concentrations of meta- enzymes. It is a sigmoidal function with input a
rate constant and its total concentration. We examine the effect bolite M, and enzyme E,. Metabolic reac- of regulation quality (Wactivating: +1, &
of the latter by transcriptional regulation. The basis is a simple tion rate constants (k, to k) are randomly inhibiting: -1) and the metabolite concen- ,
metabolic network with three metabolites and three enzymes. distributed on integers in the interval [1,10] tration j that regulates. The output is the .
Metabolites can activate (red line with circle) or inhibit (red line| | for 50 independent combinations (Metabo- expression rate in an interval [0,1]. In case of O T S R
with bar) enzyme expression. lic Individuals). The constant ks set to 1. no regulation the expression rate is 0.5.
_J
Quantification of effectiveness for all possible regulation strategies
\

00 1 ef1 4 7
W= (m -1 0 |y o, - g
0 0 -l I T

/ i
? [

Matrix W contains the regulation qualities of meta-
bolites to enzymes. In the example above meta-
bolite m, inhibits its degradation via e, while mj,
activates e, and inhibits e,, coded with the ordinal
numbers 5, 7 and 9 (cf. network in Box. 1).

. The number of non-zero elements in the regulation .
matrix W indicates the number of regulations. We
examine conditions with one, two and three regulations
(non-zero elements in W). Based on a fitness objective
the effectiveness of every regulation is rated for any of

the 50 Metabolic Individuals (cf. Box 2).
# of combinations 1 regulation:

# of combinations 2 regulations: 144
# of combinations 3 regulations: 672

input output

Among biological significant fitness func-
tions we implemented the reduction of
~ variation. We set m, to oscillate as a sinu-

18

soidal and tested m; of its capacity to
reduce this oscillation. The first part of the
fitness function penalizes an increase in
variation. The second part in the function
penalizes deviation from the m; concen-
tration in a non-regulated network (p).

J

Different network dynamics cause different regulations distribution

One regulation

. Two regulations

~N

l Three regulations

- Bar plot of the rggulatlon ordinals (cf. Box 4) and their fitness based We use the regulation roses to visualize two regula- The fitness for three regulation interactions is
Masl | ON the 9qu§tlop in Box 6'. . - . . tions. Lines connect the ordinal numbers of regula- | represented by the thickness of triangles.
.. Green line indicates the limit for beneficial regulations, representing tion whose thickness re ts fit
i " presents fitness. . ) .
i the sum of mean and standard deviation (s.d.) of a non-regulated ) . . Low m; accumulation  High m; accumulation
i network. Low mj, accumulation High m; accumulation W O ;*\ LI A,
* I l I h Most regulations are beneficial, albeit with a high s.d. To reduce s.d.| | "+ * . Q iy i, Lt T L4
R T RREEY we sub-divided the population into 13 individuals with and without| || g - § - ¥ T T T
- accumulation in m, (cf. Box 1). L ty® Py ”
Low m; accumulation High m; accumulation @ y o % S i . d @ % @
* Reduced s.d. . ' ¢ y ' a4 Networks with high accumulation show that
) ¥ s + High s.d. T — contrasting regulations also have contrasting
f- l' * All regulations are L « Few regulations are Low m, accumulation networks have comparable| |effects on the fitness. Many triple negative
- =0 highly beneficia b beneficial fitness values for all regulations, but to clearly distin- regulations can be used, while no triple posi-
I I * Blue bars decrease in ' I i | l ‘ I l « No obvious symmetries gujshable regullation straltegies in mg. For two regu- tive regglation is >.25 of the highest fitness.
R rows of three, red bars CRRERELE of regulations lations dynamic properties of the networks have Regulation -5, +7, -9 (orange line, cf. Box 1,
\ increase o higher impact on fitness than regulation quality. 5) for high m, is particularly beneficial. J‘
Results/Conclusions
We explored regulation distributions of simple metabolic networks (cf. Box 1) based on their capacity to reduce oscillation (cf. Box 6) and conclusions are restricted to this condition. )
Dynamic properties and flow rate determine the distribution of optimal regulations:
* Networks that do not accumulate the tested metabolite m, have a wide choice of optimal regulations. These networks are characterized by low k; and high k; values. Reducing the inflow of oscillating
substrate to the system allows for more regulation.
Regulation interactions have different effects compared to the individual regulation effects:
* The triple regulation interaction coded by ordinal numbers [-5, +7, -9] is highly beneficial (cf. Box 9). Each regulation in solitude is detrimental for the fitness (cf. Box 7).
Contrasting regulation schemes must not have contrasting fitness effects:
* For networks that accumulate the tested metabolite m, the interaction of two purely inhibitory regulations is beneficial, while the interaction of two activating regulations is detrimental (cf. Box 8). However,
knetworks without m, accumulation show no substantial differences in regulation efficiencies for positive and negative regulation interactions. )
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Sensitivity Analysis based
Adaptive Search-Space Reduction
for Parameter Estimation Applications

UIf W. Liebal & Henning Schmidt

University of Rostock, Systems Biology and Bioinformatics group

Modelling of biological systems is an iterative process. A common scenario is:

1. A model is built that reflects available experimental data.
2. New experimental data generated - the model is not able to explain the data.
3. Re-estimation of all parameters based on the new data?

hypothesis generation &

in silico xperimental falsification

experiments

Problems: .many parameters

. different experiments and measurement data

- parameter unidentifiability

Current solutions use sensitivity based approaches for parameter selection:
. local SA, e.g. Dash et al.
- global SA, e.g. Jin et al.

= using SA with specific objective functions, e.g. Yue et al.

model adaptation &

4"1; ﬂarameter estimation
‘Wi
v

Goal: Experiment specific adaptive identification of parameters responsible for divergent model-experiment behaviour!
Residual and Sensitivity aided iterative Search space Reduction: RSiSR

PHO3D balancing ThMP 10uM

Method + Example 2500

We consider a model of Thiamine uptake in S. cerevisiae (Ericson et al.). 2°°°//\\

c
S
The example serves as a well known system; for the sake of 5 1500 —Th 1t experiment
. . . . . . $ |+
demonstration of the method, simulated data is used with deviations §1ooo\ —Top
5 —
in two parameters affecting Thiamine uptake. R ————,
Two exp. settings are investigated: %50 G0 e s 00”720 - il
N . . Time e Model
. 1st experiment: null-mutant for the Thiamine uptake B0 Parameters
. . . I i
“>Experiment 1 - parameter estimation Qs =/
. 2nd experiment: uptake of Thiamine is functional 21 experiment
i Accumulation 10um thiamine
RSiSR procedure:
— . m — oY [,1 1 1 ) 1 , 2 i T
egtp) Y \(t) vitr) o)  <(p) = [i(tp). ¢i(t2,0), - (), €3(t2,p) s € (t1,P), ]
residual measured state (1)  model prediction (t) stacked residuals vector Taylor expansion for the error at Ap,
assuming linear approximation and
disregarding higher prder terms. ”—V“ﬁ“—"l ”_H‘?"':_‘Vi ”_Vl‘;ih_m
T iz Ot
10° rooe — : : :
“-......".“. /(P +Ap) = e(p) — QAp 0ty ) Oty . Oublimym)
% 10° %00 k_) g W, (9 »,/f??‘.,.y P
g o computing singular values of Q allows D—pF(l') =Q= | "o Spa S
5 identification of (almost) linearly : : :
3 1071} press st a ot renges er o << dependent parameter sensitivities. Dy ) O3ty ) D)
s These have to be eliminated to in- 2 Az 2
3 1079 crease the information content of Q. : :
8 %o 1.
20 %% ® The RSiSR ranking for weighted 7, in log scale shows four
1075 10 20 30 oy parameters that strongly determine the discrepancy of
parameter o 4 o T; is a measure that reflects the model and observation. Among those four identified
S . 2 ° relative parameter change that is parameters are the two parameters that are perturbed.
?eeduwgéunsge::i);:e;(yexnf:::,?;o;nfgr T% required to minimize the residual 4 In a following
parameter vector. é 0s o r — error. m forms the basis for a ) stnwf‘m parameter esti-
eu o ranking for parameter estimation. o Ky mation the four
€(Pred + Aprea) = €(Pred) — QredAPred PP 7 = Apred 1 ] il top-scoring para-

° Sl e * TEE Prcd.i ¢ 0 meters would be
setting I.h.s to zero and solving 2 e 8 80 3 estimated. This
the equation for Ap sy . residual vector index > -2 speeds up the

£ parameter deter-
- 1 £ 4 inat
A[),,‘P/d = (Q:Tedm/ Qred) in-chG(prmi) W, the weighting matrix, is user defined generated by choosing § :;gar;?]r‘;;rsoze:‘sore
’ a threshold below which the significance of a residual increases Sy precise.
the lower its value. This guarantees the conservation of already
fitted experiments by raising their influence. The first 15 indices 8
’ correspond to the well fitted experiment. 12345678 9101112
\ parameter index Y,
e A
Conclusions

= Considerable reduction of search-space, identifying parameters important for un-fitted experiments

« Assumption of linearity => only an approximation
. Iterative use between different runs of parameter estimation
. Manual and eye inspection at the moment but can easily be automized

. Adaptable and improvable weight matrix

Moy o
d Soop,

al/ailable .
i

n ¢
e
SBTOOLBO
X2

" Can be useful to determine parameters important for obtaining a desired response shape — potential use for drug target identification

s N N [ a
Literature Acknowledgments Contact
. Henning Schmidt
Dash, R.; et al. (2008); /EEE Trans. on Biomedical Engineering BMBF - Ba CeII-SysMO Prolect FORSYS Research GI’OUpgh”VIOSYS

Eri , A, et. Al. (2008); E: in Biochemistry - Syst: Biol

J‘:cs\{sone‘ al.?2007)(; american control Conference oY BMBF — Forsys Partner Systems Biology and Bioinformatics
Schmidt, H., et al. (2006); Bioinformatics ysMO .“‘ /\ University of Rostock
Yue, H ., et al. (2006); Molecular BioSystems S /. ?) RN SRR Albert Einstein Str. 21
bk &H “m FORSYS P 18059 Rostock, Germany

L JJ L ) " " e )L g‘ henning.schmidt@uni-rostock.de |







Warum betrunkene Bakterien
Wissenschaftlern viel uber molekulare

Prozesse in der Zelle verraten

Erschienen unter anderem in Profile-Magazin der Universitit Rostock, 2/2012, 12-13
und der Ostseezeitung am 03.04.2012. Text erstellt in Zusammenarbeit mit Wolfgang
Thiel, Olaf Wolkenhauer und Ulrich Vetter.

‘Es ist mein Wunsch, das Leben von Bakterien, so gut es eben geht, zu erklaren’, sagt
Ulf Liebal. Der 30-jédhrige Biochemiker der Universitdt Rostock hat in Halle studiert und
seine Diplomarbeit, iiber die Wirkstoffproduktion in Bakterien, in Finnland geschrieben.
Die Forschung im Labor sagt dem jungen Mann, der im Studentenorchester Fagott spielt,
allerdings nicht so zu. Seiner Faszination, zu erfassen, wie aus kleinsten Molekiilen ein
komplexer Organismus entsteht, tut das aber keinen Abbruch. Deshalb ist sein Metier
die noch junge Disziplin der Systembiologie der ‘Biochemie am Computer’ wie er sagt.
Hier kombiniert er Methoden der experimentellen Biologie und der Bioinformatik mit
mathematischen Modellierungsansétzen. So entsteht am Rechner ein Bild der Vorginge
innerhalb einer Zelle, der kleinsten biologischen Einheit, die sich selbst vermehren kann.
Konkret erforscht Ulf Liebal, wie das im Boden lebende Bakterium Bazillus subtilis auf
Stress reagiert, in diesem Falle, wenn es mit Alkohol in Beriihrung kommt. ‘Ich unter-
suche also betrunkene Bakterien’, beschreibt der junge Wissenschaftler seine Arbeit. Zwar
wird im Laborversuch Alkohol bewusst eingesetzt, in der Natur allerdings gibt es mehrere
Quellen, aus denen Alkohol entsteht und in den Boden sickert: beispielsweise faulende

Friichte.

‘Viele denken bei Bakterien an Krankheitserreger, die wir mit anti-bakteriellen Reini-

gungsmitteln aus unseren Hausern vertreiben’, sagt Ulf Liebal. Das Bakterium, das er



untersucht, ist iiberall in der Umwelt anzutreffen. Es lebt im Boden und hilft den Pflanzen
beim Wachstum, ist also kein Krankheitserreger. Wie gedeiht es im Boden und wie reagiert
es auf die Umwelt? Das will der junge Forscher herausfinden. Es ist bekannt, dass ein
Bakterium nach einem Stresserlebnis seine Zusammensetzung dndert. Die Untersuchun-
gen mit Alkohol nutzt der 30-Jahrige, um mehr iiber die Verkniipfung von Stresserlebnis
und Zusammensetzung des Bakterium erfahren. So gibt es einen Einblick, welche Prozesse
Bakterien im Menschen auslosen knnen, womit sich auch neue Moglichkeiten zum Beispiel

zur Behandlung von Lebensmittelvergiftungen ergeben.

Alkohol stresst Bakterien, weil er wichtige Proteine beschidigt. Deshalb hat sich das
Bakterium einen eigenen Alkoholtest entwickelt. Dieser Testsensor besteht aus 60 Pro-
teinen, die geometrisch und symmetrisch aufgebaut sind. ‘Das muss man sich in etwa
wie einen Weihnachtsstern vorstellen’, sagt der Forscher. Er hat mit einem einfachen
Papiermodell diesen Sensor nachgebaut. ‘Ich bin jetzt in der Lage, die Bewegungen des
Proteins auf Tischmodellgrofle nachzuempfinden’. So zeigt sich, dass es allgemeine Regeln
fir Bewegungen von geometrischen Strukturen gibt. Die sind vermutlich auch fiir den
mikroskopisch kleinen Sensor in der Zelle giiltig. Ulf Liebal gewinnt durch sein Modell
einen besseren Einblick, wie das Bakterium auf Alkohol reagiert. Spiirt eines von den 60
Proteinen Alkohol, dann bewegt sich das Protein und aktiviert damit andere in der Nach-
barschaft. ‘So kann wenig Alkohol schon eine grofie Reaktion in der Zelle auslésen. Ein
kleines Geheimnis ist damit geliiftet’, ist der junge Mann stolz. Fir ihn sind Papier und
Kreativitat wichtiger geworden als teure Labore. Dennoch benutzt er Daten von Partner-
Laboratorien, um seine Modelle an die Wirklichkeit anzupassen. Diese sind unentbehrlich,

um die komplexen molekularen Anpassungsvorgiange vollstandig zu erfassen.

Um die biologischen Organismen in ihrer Gesamtheit jedoch besser verstehen zu kénnen,
arbeiten Wissenschaftler verschiedener Fachrichtungen interdisziplinar eng zusammen. Die

experimentellen Untersuchungen erfordern zudem so komplexe, aufwendige und teure La-



boreinrichtungen, dass ein einzelnes Labor dazu nicht in der Lage wére. Die Gruppe um
Professor Olaf Wolkenhauer in Rostock, zu der auch Ulf Liebal gehort, ist Teil einer grofien
internationalen Initiative, der sogenannten BaCell-SysMO, die sich zum Ziel gesetzt hat,
das Bakterium nicht nur besser zu verstehen, sondern auch besser nutzen zu konnen.
In Deutschland unterstiitzt das Bundesministerium fiir Bildung und Forschung (BMBF)
neben den Wissenschaftlern in Rostock auch Forschergruppen in Greifswald, Gottingen,
Erlangen, Braunschweig und Marburg. Im Ausland arbeiten Universitdten in Gronin-
gen, Manchester und Newcastle an den gleichen Zielen. ‘Vernetzung, um Vernetzung

aufzuklaren. Das ist Systembiologie’, sagt Professor Olaf Wolkenhauer.
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