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Abstract: Ustilago maydis is an important plant pathogen that causes corn smut disease and serves
as an effective biotechnological production host. The lack of a comprehensive metabolic overview
hinders a full understanding of the organism’s environmental adaptation and a full use of its metabolic
potential. Here, we report the first genome-scale metabolic model (GSMM) of Ustilago maydis (iUma22)
for the simulation of metabolic activities. iUma22 was reconstructed from sequencing and annotation
using PathwayTools, and the biomass equation was derived from literature values and from the
codon composition. The final model contains over 25% annotated genes (6909) in the sequenced
genome. Substrate utilization was corrected by BIOLOG phenotype arrays, and exponential batch
cultivations were used to test growth predictions. The growth data revealed a decrease in glucose
uptake rate with rising glucose concentration. A pangenome of four different U. maydis strains
highlighted missing metabolic pathways in iUma22. The new model allows for studies of metabolic
adaptations to different environmental niches as well as for biotechnological applications.

Keywords: Ustilago maydis; genome-scale metabolic model; constraint-based model; biotechnology;
COBRA; FBA; metabolism; itaconate

1. Introduction

Ustilago maydis is a model organism and economically important fungus from the
division of Basidiomycota. The associated corn smut disease affects maize harvest, but the
tumors are also used as food [1]. As a parasite, U. maydis grows into the plant tissue to
extract substrates for its own metabolic activity. Ustilaginaceae show a versatile product
spectrum, such as organic acids (e.g., itaconate, malate, succinate), polyols (e.g., erythritol,
mannitol), and extracellular glycolipids, which are considered value-added chemicals with
potential applications in the pharmaceutical, food, and chemical industries. U. maydis has
developed an effective native production of itaconic acid, an important platform chemical.
Indeed, the itaconic acid production in U. maydis was improved to surpass the current
biotechnological route of Aspergillus terreus-based production. The advantages are yeast-
like growth; high productivities, yields, and titer; and reduced byproduct formation [2–4],
and since it is a model organism, efficient genetic tools are available [5].

The annotated genome sequence of Ustilago maydis strain 512 enabled a deeper under-
standing of its pathogenic mechanisms as well as metabolic competencies [6]. Annotated
genomes can be used to construct genome-scale metabolic models (GSMM), which serve
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as a knowledgebase of metabolic capacities and allow rational biotechnological engineer-
ing [7]. GSMM can be optimized to identify genetic modifications for metabolic engineering
that maximize the production of metabolic intermediates. In addition, optimal biotechno-
logical production routes regarding different organisms and metabolic pathways can be
computationally evaluated using their respective GSMM [8]. The performance of metabolic
microbial and cross-kingdom interactions can be interrogated in order to identify exchange
metabolites, community stability, and metabolic properties that mark transitions from
mutualism to parasitism [9–11].

Here, we present the first high-quality genome-scale metabolic model for U. may-
dis, called iUma22. Growth phenotype assays based on BIOLOG with 190 substrates
were conducted to reveal the metabolic versatility of U. maydis for more realistic model
predictions in native habitats. Moreover, growth kinetics across a range of high glu-
cose concentrations were performed, which allowed for improved metabolic character-
ization during biotechnological fermentations. To judge the metabolic completeness of
iUma22, as well as metabolic capacities in comparison to the Ustilago genus, a pangenome
of annotated enzymes of different U. maydis strains was constructed. The model is
freely available online via the Biomodels database ID: MODEL2203250001 and GitHub:
https://github.com/iAMB-RWTH-Aachen/Ustilago_maydis-GEM (accessed on 24 March
2022). The quality of the model was assessed using the Memote evaluation tool, as well as
FROG reports for reproducibility (see Supplementary Materials).

2. Materials and Methods
2.1. Draft GSMM from Pathway Tools

The genomic DNA sequence of Ustilago maydis (Strain 521 FGSC 9021) [6] was obtained
from NCBI’s RefSeq project [12]. A corresponding annotation file was then exported
from the MIPS Ustilago Maydis Database via the PEDANT Interface [13]. Using the
PathoLogic Tool [14], the sequence and annotation files were parsed and, in combination
with the MetaCyc reactions database, a new Pathway/Genome Database (PGDB) was
created. During pathway cleaning, reactions from other taxa are pruned, unless there
were enzymes matching all of the reactions. Additional metabolic activity was identified
using the ‘Pathway Hole Filler’ function and the sequence information of isoenzymes was
used to query the proteome of U. maydis via pBlast. Protein sequences were queried on
PEDANT, MUMDB, MetaCyc or KEGG [15,16] and manually curated, while inconclusive
polypeptides, as well as those that are involved in signaling and other nonmetabolic
pathways, were discarded. While PEDANT and MUMDB are discontinued, information on
the sequence and annotation for U. maydis can be accessed via EnsemblFungi: https://fungi.
ensembl.org/Ustilago_maydis/Info/Index (accessed 24 March 2022) [17], MycoCosm:
https://mycocosm.jgi.doe.gov/Ustma2_2/Ustma2_2.home.html (accessed on 24 March
2022), NCBI (genome assembly ID: 225285), and Uniprot (Proteome ID: UP000000561).

2.2. Strains Sequenced, Pangenome, KEGG Pathway Enrichment

To identify metabolic differences within the U. maydis strain family, a pangenome
consisting of five Ustilago maydis strains was assembled, including strains 198, 482, 485,
and 512 [18]. The Nanopore Rapid DNA Sequencing kit (SQK-RAD04, Oxford Nanopore
Technologies, Oxford, UK) was used for preparation, and sequencing was performed on
an Oxford Nanopore GridION Mk1 sequencer using a R9.4.1 flow cell. The Nextera XT
DNA Sample Preparation Kit (Illumina, San Diego, CA, USA) was used for whole-genome-
shotgun PCR-free libraries from 5 µg of gDNA. The library quality was assessed by an
Agilent 2000 Bioanalyzer with Agilent High Sensitivity DNA Kit (Agilent Technologies,
Santa Clara, CA, USA) for fragment sizes of 500–1000 bp. Paired-end sequencing was
performed on the Illumina MiSeq platform (2 × 300 bp, v3 chemistry). Adapters and low-
quality reads were removed by an in-house software pipeline prior to polishing, as recently
described in [19]. Run control was based on MinKNOW (Oxford Nanopore Technologies,
Oxford, UK) with the 48-h sequencing run protocol. Base-calling was performed offline
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using a Bonito assembly with canu v2.1.1 [20], contigs were polished with Pilon [21] for ten
iterative cycles, and for read mapping, BWA-MEM [22] and Bowtie2 v2.3.2 [23] were used
in the first and second five iterations, respectively.

Genes were predicted using GeneMark-ES 4.6.2. [24] and functionally annotated using
a modified version of the genome annotation platform GenDB 2.0 [25] for eukaryotic
genomes [26]. Similarity searches were conducted against COG [27], KEGG [16] and
SWISS-PROT [28]. Identification of putative tRNA genes was conducted with tRNAscan-
SE [29]. Completeness, contamination, and strain heterogeneity were estimated with
BUSCO (v3.0.2 [30]) using the fungi-specific single-copy marker genes database (odb9).
The obtained genome sequences are compared and documented in more detail in Ullmann
et al. (2022) [18]. The pangenome of all available U. maydis strains was calculated by means
of EDGAR 3.0 [31]. The KEGG pathway annotation was performed by comparison of E.C.
numbers in the pangenome annotation and E.C. numbers in the reaction description of
iUma22. The comparison resulted in three lists: E.C. numbers only present in iUma22
(iUmaNOTpan), present in the pangenome and iUma (iUmaANDpan), and only present
in pangenome (panNOTiUma). The panNOTiUma list was exported as a fasta-file, and
KAAS [32] was used to annotate the list with KEGG pathway information. The annotation
of the genes in the SBML-file was achieved with the BioServices Python package [33].

2.3. Biomass Equation and Growth/Non-Growth Maintenance

The composition of proteins, RNA, and DNA was estimated based on the respective
protein and genome sequences, whereas the composition of lipids and the cell wall were
results-mined from scientific articles [34,35]. The exact biomass composition of U. maydis
is not available; however, the specific elemental composition [36] (and the biomass com-
position for fungi in general [37]) was used as a starting point, and linear programming
was applied to approximate the total biomass composition (Supplement). The composition
values of each monomer were converted into stoichiometric values [38]. For example,
to determine the amino acid (AA) composition contribution (in molAA/gProt), first, the
AA-protein molarity (MPAA in gAA/molProt) was calculated by multiplying the AA codon
frequency with the AA molar mass (minus the molar mass of water released during poly-
merization) (Equation (1)). Normalizing each AA-protein molarity by the overall sum
yields the weight fraction of each AA (WPAA) (Equation (2)). Division of the AA weight
fraction (WPAA) by its molar mass and multiplication with the weight fraction of protein to
the dry weight (X in gProt/gCDW) and conversion from mol to mmol (factor 1000) provides
the stoichiometric factor (SFAA) (Equation (3)). To calculate the stoichiometric factor of an
AA (SFAA), the molar percentage (MP) is multiplied with the fractional protein mass per
biomass (X) (Equation (2)).

MPAA [gAA/molProt] = CDNAA/Σ CDN • (MAA − MH2O) (1)

WPAA [gAA/gProt] = MPAA/Σ MP (2)

SFAA [molAA/gCDW] = WPAA/(MAA − MH2O) • X • 1000 (3)

The fraction of protein on total biomass (X) is unknown and was determined by linear
optimization. The average elemental composition of each macromolecule (protein, DNA.,
RNA, lipid, cell wall) was determined by summing up the products of the absolute amount
of each element, and the corresponding C-mole content was calculated [36]. Phosphorous
and Sulfur were added from the elemental composition of Sacharomyces cerevisiae. The
optimization followed the formula:

A • X = b (4)

subject to: xlbi ≤ xi ≤ xubi (5)

The rows of matrix A correspond to elements C, H, O, N, P, and S, whereas the columns
correspond to the macromolecule types (protein, DNA, RNA, lipids, cell wall). Vector b
represents the measured elemental biomass, C, H, O, and N, supplemented by the ele-
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mental content of the P and S of S. cerevisiae. The equation was solved for vector X, the
biomass fractions of each of the macromolecules (Table 1 and Supplementary Materials).
The ATP-associated growth-maintenance (GAM) with ATP-dependent glucose uptake was
calculated as 31 mmol/gCDW by optimization of the sum of the squared errors of growth
experiments (see Section 3). The nongrowth-associated maintenance (NGAM) was calcu-
lated as 0.75 mmol/gCDW/h by maximization of NGAM with the lowest, not infeasible
glucose uptake rate of 0.22 mmol/gCDW/h close to the experimentally determined glucose
maintenance requirement of 0.2 mmol/gCDW/h (see Section 3.3).

Table 1. Macromolecular composition of U. maydis calculated by linear optimization. The full
composition is provided as a Supplement.

Component Protein DNA RNA Lipids Cell Wall

g/100 gCDW 30 0.3 10 40 16

2.4. Substrate and Growth Experiments

For the substrate utilization experiments, the BIOLOG Phenotype Microplates™ PM1
and PM2A were used with Ustilago maydis strain FB1. Cultures were first grown on YEPS-
agar plates at 30 ◦C for at least 24 h. To prepare the precultures, 25 mL of YEPS medium
were inoculated from the plates of each strain then performed in 100 mL Erlenmeyer
flasks and incubated at 30 ◦C, 200 rpm for 24 h (Ecotron Incubation shaker, Infors HT
AG, Bottmingen, Switzerland). The inoculation fluid was prepared with IFY-0 (1.2×), cell
suspension, and sterile water to obtain a starting turbidity of 62% T, with 100 µL for each
well. The inoculated plates were shaken at 200 rpm with a shaking diameter of 50 mm
at 30 ◦C and with a humidity of 70% for up to 168 h (Multitron Incubation shaker, Infors
HT AG, Bottmingen, Switzerland). Microbial growth was measured with the SynergyMX
(BioTek Instruments, Winooski, VT, USA) with an optical density of 600 nm. The BIOLOG
raw data is available in the Supplements.

The threshold for positive growth was determined by examining the optical density
(OD) histograms for each plate. A normal distribution at low OD values represents the
OD range below positive growth (see Section 3.2). The final growth threshold of 0.4 a.u.
(absorbance units) was empirically determined to maximize logic consistency and to
minimize the integration of false positive metabolic activity. The value approximates the
end of a normal distribution of non-growth at low ODs. Separate glucose shake-flask batch
experiments in modified Tabuchi medium [39] were conducted with strains MB215, FB1
mating type a1b1, and literature data was used to estimate growth rates and glucose uptake
rates. The OD measurements of the growth data were converted into gCDW/L using the
empirical relation from yeast of 0.62 gCDW/L /OD (BNID 111182, [40]). The growth rates
were identified using a nonlinear fit of the biomass to the Verhulst equation,

X(t) = X0*C/(X0 + (C − X0)*exp(−µ*t)), (6)

Which calculates the biomass from the initial biomass (X0), the max biomass capacity
(C), the growth rate (m), and time (t). The substrate uptake rate was estimated with a linear
equation [41].

3. Results and Discussion
3.1. Description of iUma22

The genome-scale model for Ustilago maydis was constructed based on the genome
sequence and annotation of strain 521 [6]. Table 2 shows the number of represented
genes, metabolites, and reactions in the new reconstruction, as well as a comparison to
the community yeast model ([42], version 8.5.0). Whereas the community yeast model
was more comprehensive, iUma22 had a higher gene-to-reaction ratio as well as gene-
protein-reaction relationships (GPR), as we aimed to include well-connected metabolic
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pathways with (predicted) annotated genes. U. maydis and S. cerevisiae have a similar
number of predicted genes and, when assuming yeast 8.5.0 as a benchmark of metabolic
representation, the iUma22 reached 70% of genes completeness. There are likely gaps in
the secondary metabolism discussed in Ullmann et al. (2022) [18], as well as adaptations to
the pathogenic lifestyle.

Table 2. Number of metabolites, reactions, and genes of the genome-scale metabolic model of U.
maydis iUma22 and, in comparison, the community yeast model (8.5.0 [42]).

Component iUma22 Yeast 7.6 1

Genes 814 1150
Metabolites 1233 2742
Reactions 1856 4058

Reactions with GPR 1434 2633
Predicted genes 2 6909 6464

1 https://github.com/SysBioChalmers/yeast-GEM, commit 24 June 2021. 2 https://www.ncbi.nlm.nih.gov/
datasets, accessed on 4 February 2022.

The quality of iUma22 was tested with Memote with an overall performance of
57% [43] (Figure 1). Mass and charge balance, as well as metabolite connectivity, showed
high quality, with scores of over 98%. Memote detected unbounded fluxes that reached
boundary conditions during flux variability analysis for 203 reactions on standard media.
The stoichiometric consistency of the model could not be evaluated, thus decreasing the
overall consistency quality to 53%. Note, however, that for the S. cerevisiae community
model ([42], version 8.5.0), the stoichiometric consistency test also failed. Annotations
for metabolites, reactions, and genes contained detailed and unique annotations. The
community yeast model, developed for more than a decade, was evaluated by Memote
with a total score of 65%.
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3.2. Carbon Substrate Tests with BIOLOG Phenotype Arrays

The model iUma22 correctly reproduced 96% of the growth phenotypes tested in
BIOLOG carbon source assays. In these assays, each well of a 96-well plate was equipped
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with a different substrate; we chose carbon substrate plates PM1 and PM2A from the
manufacturer (an overview of the carbon source distribution in the wells is provided
in the Supplements). Substrate utilization was tested photometrically, and we chose an
OD threshold of 0.4 a.u. for growth, a value right after the apparent normal distribution
of nongrowth for low final OD values (Figure 2). The threshold was a compromise to
include growth for glycine dipeptides (PM1: E1, G1, G6, H1), but also included TCA
cycle intermediates (succinate (PM1:A5), fumarate (PM1:F5), aspartate (PM1:A7), and
malate (PM1:G12)). These TCA cycle intermediates could not be enabled for growth in the
model. The largest set of reactions added because of the BIOLOG plates included di- and
oligosaccharide metabolism and methylated central carbon metabolites (detailed list in the
Supplements). Overall, growth took place in 52 wells (36 in PM1 and 28 in PM2A). iUma22
was manually adjusted to reproduce the majority of the growth phenotypes (Figure 2).
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Figure 2. BIOLOG phenotype experiments with carbon sources from PM1 and PM2A. Growth was
evaluated by OD 600 after 144 h for PM1 (A) and 288 h for PM2A (B) with a threshold of 0.4 a.u
(black line with triangle), which excludes the normal distribution at low ODs representing no growth.
Fifty-two substrates were correctly predicted to growth (true positive, green), and 128 were correctly
assigned to nongrowth by iUma22 (true negative, yellow) in plates PM1 (C) and PM2A (D). Twelve
substrates could not be balanced to enable growth in iUma22 (false negative). Results of PM1 and
PM2A and an overview of the substrates on the plates are provided as Supplementary Materials.

While the majority of the substrates were correctly reproduced, some metabo-
lites failed to support growth in iUma22. Many intermediates from the TCA cycle
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did not support growth in the BIOLOG results (2-oxoglutarate, fumarate, succinate,
aspartate) while others, such as lactate (PM1:B9), malate (PM1:G12), and succina-
mate (PM2A:F10), were positive (Figure 2). The degradation of arginine (PM2A:G4),
isoleucine (PM2A:G9), and ornithine (H1) was dysfunctional in iUma22, although
proline had been predicted to enable growth. These metabolites are carbon inter-
mediates of the common carbon metabolization following the ornithine-glutamate
aminotransferase reaction (E.C. 2.6.1.13, ORNTArm). The metabolization of sebacic
acid (PM2A:F8) is not represented in the model, because no information is available
in the databases KEGG and Metacyc. False positive growth predictions indicated
exchange and transport reactions of metabolites in the model that could not actually be
imported. Thus, growth predictions of the corresponding metabolites were corrected
by removing exchange reactions of the associated metabolites.

3.3. Growth Rate Correlation

We evaluated glucose growth characteristics and compared the results with iUma22
predictions. We used published batch data of U. maydis MB215 control strains [4] that
were genetically modified for optimized biotechnological performance, as well as newly
generated data (Table 3). Note that the model considers ATP-consuming glucose uptake
via Hxt1 [44]. Experiments with high initial glucose concentrations of >50 g/L resulted
in lower glucose uptake rates, which is not associated with osmotic stress, because the
yield stayed high with increasing glucose levels. The correlation between substrate uptake
rate and growth rate (Figure 3A) was strong, R2 = 0.99, with a realistic growth-associated
yield (slope) of 0.47 gCDW/gglc. While experiments ‘130v1’ and ‘130v2’ displayed disparate
substrate uptake and growth rates despite similar initial glucose concentrations, their yield
was comparable, indicating a similar metabolic state. The maintenance parameter of the
high-yield experiments was calculated as the x-axis interception, i.e., glucose uptake in
the absence of growth, and resulted in 0.2 mmol/gCDW/h, comparable to S. cerevisiae
(0.2 mmol/gCDW/h [45]). The growth predictions of iUma22 are closely captured in the
experimental results (Figure 3C).

Table 3. Glucose batch growth experiments were performed and used from the literature [4]. The
data provided growth and substrate uptake rates for testing iUma22 predictions. Growth results for
each experiment is provided in the Supplements.

Source ID Strain Initial Glc, g/L Growth Rate, /h Substrate Rate, mmol/gCDW/h Yield, gCDW/gglc

This work 2229v1 MB215 50 0.18 +/− 0.04 2.2 +/− 0.6 0.45

Becker et al. 50glc MB215 54 0.08 +/− 0.02 1.22 +/− 0.36 0.36

This work 130v1 MB215 126 0.07 +/− 0.02 1.1 +/− 0.34 0.33

This work 130v2 MB215 132 0.04 +/− 0.01 0.74 +/− 0.18 0.3

Becker et al. 100glc MB215 106 0.04 +/− 0.01 0.67 +/− 0.19 0.33

This work 200v1 MB215 203 0.02 +/− 0.01 0.33 +/− 0.08 0.33

This work 200v2 MB215 216 0.02 +/− 0.01 0.55 +/− 0.1 0.33

3.4. U. maydis Pangenome Comparison

We used the available sequenced U. maydis strains [18] to compare the enzymatic gene
inventory among strains and regarding iUma22. A pangenome of strains 198, 482, 485, and
512 was constructed by means of EDGAR 3.0, resulting in 7838 coding genes, of which
1458 are annotated with an E.C. number. We explored how many genes are shared among
all strains and used strain 512 as a reference to identify unique enzyme coding genes and
the proportion of shared genes to other strains (Figure 4A). An overwhelming number
of genes is shared among all strains (‘all strains’ in Figure 4A). Strain 512 has a number
of unique enzyme-coding genes that are more likely shared with other strains because
genes with more selective distributions (shared among three strains to one other strain)
are becoming less frequent (see also Ullmann et al. [18], 2022). We then evaluated how the
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genetic composition of iUma22 differed with respect to the U. maydis pangenome of E.C.-
annotated genes (Figure 4B). Table 4 shows the top five pathways with the most enzyme
annotations for iUma22-unique genes, shared genes, and pangenome-unique genes with
E.C. numbers. The majority of iUma22-unique genes belong to oxidative phosphorylation,
and the unique genes in the strain pangenome belong to diverse central carbon metabolic
pathways (Table 4). Particularly noteworthy is the inositol phosphate pathway (Figure 4C),
not only because of the highest number of pangenome unique metabolic capacity but also
because inositol was a growth-supporting substrate of the BIOLOG, which was manually
added to the model.
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Figure 3. Growth characteristics of U. maydis glucose batch cultures from Table 3 and similarity to
iUma22 predictions. (A) Seven batch experiments on glucose were analyzed to extract growth- and
glucose-uptake rates. The linear least-squares correlation provides the biomass yield on glucose with
0.47 +/− 0.03 gCDW/gglc, and the interception of the x-axis provides the glucose maintenance uptake
rate with 0.2 +/− 0.01 mmol/gCDW/h. The two inlet figures exemplify the growth rate estimation
by a logistic Verhulst equation for growth (green) and linear substrate uptake (blue) for experiment
ID ‘50glc’. (B) Glucose-uptake rate as a function of the initial glucose level indicating an inverse
correlation. (C) Simulated and experimental growth rates, with optimal predictions represented by
the black line. The individual growth rate data is provided in the Supplements.
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Table 4. Top five metabolic pathways with the highest number of missing genes in iUma22 compared to
the strain pangenome. The annotation is based on KAAS, considering only KEGG pathways (KAAS
outputs for iUma22-unique, -shared, and pangenome-unique provided as Supplementary Materials).

iUma22-Unique Shared Pan-Unique

Oxidative phosphor. (42) Purine (29) Inositol phosphate (20)
TCA cycle (2) Pyruvate metabolism (27) Purine (12)

C5-branched metabolism (1) Glycolysis (25) N-Glycan biosynth. (11)
Nitrogen metabolism (1) Gly, Ser, Thr metab. (24) (GPI)-anchor biosynth. (11)

Starch and sucrose (1) Val, Leu, Iso metab. (24) Starch and sucrose (10)
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4. Conclusions

Here, we present iUma22, a genome-scale metabolic model of U. maydis, which correctly
simulates a large number of substrate phenotypes as well as glucose-based growth rates. The
decrease in glucose uptake at high concentrations indicates potential for biotechnological
optimization. The model can be further used to identify the biotechnological potential of
metabolite overproduction and to optimize metabolic engineering strategies. It can also be
used to study metabolic shifts in different life cycles of the fungus during plant infection.
While the reconstruction was performed based on model strain 521, the genome sequencing
of additional U. maydis strains provided insight into additional metabolic pathways, which
could be used to generate a pangenome-scale metabolic model of U. maydis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof8050524/s1. The supplementary material is available on the
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results of the optimization for the growth equation. S3: HTML output of full SBML quality scan with
Memote. S4: Zip file with FROG report. S5: Excel file with the results of BIOLOG phenotype arrays
PM1. S6: Excel file with the results of BIOLOG phenotype arrays, PM2A. S7: PDF with BIOLOG
substrate overview on plates PM1 and 2A. S8: Excel file with reactions added on the basis of the
BIOLOG experiments. S9: Excel file with the growth experiments. S10: HTML output of KAAS
for pathways unique to iUma22. S11: HTML output of KAAS for pathways shared among iUma22
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